
JSC 38605 Rev. A

Guidelines for the Rapid Development
of Software Systems

- Revision A -

ENGINEERING DIRECTORATE

AEROSCIENCE AND FLIGHT MECHANICS DIVISION

18 February 1998

National Aeronautics and
Space Administration

Lyndon B. Johnson Space Center
Houston, TX

JSC 38605 Rev. A

Guidelines for the Rapid Development
of Software Systems

- Revision A -

Prepared By:

Denise M. DiFilippo
G. B. Tech, Incorporated

Approved By:

___________________________________ ___________________________________

David A. Petri, Deputy Chief James P. Ledet
GN&C Development and Test Branch Code Q RTOP Project Manager
Aeroscience and Flight Mechanics Division Aeroscience and Flight Mechanics Division
NASA/Johnson Space Center NASA/Johnson Space Center

Concurred By:

___________________________________ ___________________________________

Karen D. Frank, Chief Aldo J. Bordano, Chief
GN&C Development and Test Branch Aeroscience and Flight Mechanics Division
Aeroscience and Flight Mechanics Division NASA/Johnson Space Center
NASA/Johnson Space Center

This Page Intentionally Blank

Page -6

February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

Preface to Revision A

The original release of this document captured the results of work performed in FY’96 with
funds provided under the Research and Technology Operation Plan (RTOP) by the Office of
Safety and Mission Assurance (OSMA). OSMA has delegated requirements for the Agency
Software Program to Ames Research Center Software Technology Division (ARC/IT) located
in Fairmont, West Virginia. Work under this initiative was managed at ARC/IT by Kathryn M.
Kemp, Deputy Chief, Software Technology Division, and George J. Sabolish, Center Software
Initiative Manager. The work was performed in the Aeroscience and Flight Mechanics Division
at the Johnson Space Center in collaboration with the Jet Propulsion Laboratory.

The results of FY’96 work were documented in a 2 volume set consisting of:
• JSC 38605 Guidelines for the Rapid Development of Software Systems
• JSC 38606 Guidelines for the Rapid Development of Software Systems - References

This initiative continued in FY’97, with oversight from Center Software Initiative Director
William Jackson, with the objectives of determining the effectiveness of the guidelines by
using them in a rapid software development demonstration project, comparing the
methodology to established standards, and updating these guidelines based on observed
results. The results of the demonstration project and one comparison study were documented
in the following documents:

• JSC 38607 Correlation of the Rapid Development Methodology to the Software
Engineering Institute’s Capability Maturity Model

• JSC 38608 Deorbit Flight Software Demonstration Project Summary
• JSC 38609 Deorbit Flight Software Demonstration Lessons Learned

This document has been revised based on observations and lessons learned in the
demonstration project. We believe that the result is an improved set of guidelines for the rapid
development of software systems.

Though not formally treated here, it is worth noting that some aspects of the Rapid
Development methodology have been successfully used to produce actual flight software,
developed in the Rapid Development Laboratory, for space craft.

Contributors

The following people have contributed to the ideas and content of this document: Bruce
Abramson (Boeing), Aldo Bordano (EG1), Bill Brown(Syscom), Faye Budlong (Draper Labs),
Benson Chang (Lockheed), John Craft(EG2), Denise DiFilippo(GBTech), John Ducote
(Lockheed), Mark Jackson (Draper Labs), Jim Ledet(EG2), Harry Ohls(JPL), Bill
Othon(Lincom), Rose Pajerski (GSFC), Doug Pesek(Boeing), David Petri(EG1), Ron Pierce
(Boeing), Carolyn Seaman (Univ. of MD), Sonya Sepabahn(EG1), Nancy Sodano (Draper
Labs), Glenn Venables (Boeing), Brad Wissinger (Boeing), Doug Zimpfer(Draper Labs).

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

Table of Contents

Section Page

1.0 Overview .. 1

2.0 Introduction ... 2

2.1 Motivation for a new methodology ..2

2.2 Finding a better methodology for modern software development3

2.3 The Expected Payoff ..4

3.0 Guidelines for Rapid Development.. 7

3.1 Project Staff ..7

3.2 Tools to Support Rapid Development ...7

3.3 Approaching the Problem ...9

3.4 Implementation Hints ..10

4.0 A Proposed Life-Cycle Model... 11

5.0 The Development Phases of the Life-Cycle Model 13

5.1 High Level Objectives of Project Initiation Phase ...13

5.1.1 The Proposal ..13

5.1.2 The Decision to Proceed ..13

5.2 High Level Objectives of Project Evaluation ...14

5.2.1 The Evaluation ..14

5.2.2 Choosing a Development Strategy ...15

5.2.2.1 The Waterfall Model ...15

5.2.2.2 The Incremental Model ...16

5.2.2.3 The Evolutionary Model ..16

5.2.3 Rapid Prototyping ...17

5.2.4 Hybrid Approaches ...17

5.2.5 The GN&C RDL Preferred Model ...18

5.3 High Level Objectives of Conceptualization Using an Evolutionary Spiral

Development Life-Cycle ...18

5.3.1 The Functional Requirements ..19

5.3.2 The System Architecture ..19

5.3.3 System Dependency Analysis ..19

5.3.4 The Project Implementation Plans ..20

5.3.4.1 Implementation Plan for remainder of project development20

5.3.4.2 Detailed Plan for cycle one of System Evolution ..20

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

5.4 High Level Objectives of System Evolution Phase ...21

5.4.1 Objectives of Each Evolutionary Cycle ...22

5.5 High Level Objectives of Finalization Phase ..24

5.6 High Level Objectives of Installation Phase ...25

5.7 Summary ..25

6.0 The Maintenance Phases of the Life-Cycle Model 27

6.1 High Level Objectives of Sustaining Engineering ...27

6.2 High Level Objectives of Shutdown ..27

7.0 Key Support Processes for Rapid Development.............................. 28

7.1 The Need for and Application of Support Processes ..28

7.2 Types of Support Processes ..28

7.2.1 Technical Processes ..29

7.2.1.1 Inspections ...30

7.2.1.2 Leveraging Project Information ...31

7.2.2 Management Processes ...32

7.2.2.1 Resource Management ..32

7.2.2.2 Project Management ..32

7.2.2.3 Risk Management ...33

7.2.2.4 Configuration Management ..34

7.2.2.5 Test Management ...36

7.2.2.6 Data & Document Management ...36

7.2.2.7 Problem Reporting and Resolution ...37

7.2.2.8 IRM (Information Resource Management) ...38

7.2.3 Institutional Processes ..38

7.2.3.1 Labor Accounting ..38

7.2.3.2 Process Improvement ...39

7.2.3.3 Training ...39

7.2.3.4 Tool & Equipment Evaluation & Selection ..39

7.2.3.5 Metrics Data Collection, Evaluation and Reporting ..39

8.0 Using Metrics for Success in Rapid Development........................... 41

8.1 Metrics Goals ..41

8.2 Measuring Values for Metrics ...41

8.3 Metrics Insights for Rapid Development ...43

8.4 Some Special Aspects of Rapid Development Metrics44

 Appendix A: References .. 46

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

A.1 Text Books ..46

A.2 World Wide Web Sites ..46

A.3 Articles & Papers ..47

 Appendix B: Rapid Development Glossary .. 53

B.1 Rapid Development Lexicon ...53

B.2 MIL-STD-498 Reviews and Documentation ...58

 Appendix C: Metrics Glossary .. 62

 Appendix D: Traditional Metrics Definitions and Acronyms 67

D.1 Definitions ...67

D.2 Metrics Acronyms ...72

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

Figures

Figure Page

1 The Traditional Waterfall Flight Software Development Approach......................3
2 Life-Cycle Major Phases..11
3 Rapid Development Team Critical Interfaces ..12
4 Evolutionary Development Life-Cycle Model...18
5 One Cycle in the Evolution Phase: Additional Detail ...22
6 Project Management Milestones ...26
7 The Support Processes Pyramid...29

Tables

Table Page

1 Initial Metrics Collected ...42
2 GQM Metrics to Support RD (preliminary) ..43
3 Sample of Traditional Development Engineering Metrics67
4 Sample of Traditional Sustaining Engineering Metrics69
5 Sample of Traditional Project Management Metrics ...70

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998

Acronyms and Abbreviations

ACRV Assured Crew Return Vehicle
AFMD Aeroscience and Flight Mechanics Division
API Application Programming Interface
COTS commercial, off-the-shelf
CMM Capability Maturity Model
DOF degree-of-freedom
EGI Embedded GPS/INS
FCOS Flight Control Operating System
FSSR Shuttle Flight Subsystem Software Requirements
FY Fiscal Year
GN&C Guidance, Navigation & Control
GPS/INS Global Positioning System/Inertial Navigation System
HIL hardware-in-the-loop
IV&V Independent Verification and Validation
ISI Integrated Systems Inc.
ISO International Organization for Standardization
ISSA International Space Station Alpha
IV&V Independent Verification and Validation
JPL Jet Propulsion Laboratory
JSC Johnson Spaceflight Center
MOD Mission Operations Directorate
NASA National Aeronautics and Space Administration
OIL Operator-in-the-loop
OMS Orbital Maneuvering System
RDL Rapid Development Laboratory
RTOP Research and Technology Objectives and Plan
SEI Software Engineering Institute
SLOC Source Lines of Code

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 1.0 Overview

Page 1

1.0 Overview

The Aeroscience and Flight Mechanics Division (AFMD) at the National Aeronautics and
Space Administration-Johnson Space Center (NASA-JSC) Engineering Directorate is explor-
ing ways of producing Guidance, Navigation & Control (GN&C) systems more efficiently and
effectively. A significant portion of this effort is software development, integration, testing and
verification.

To achieve these goals, the AFMD established the GN&C Rapid Development Laboratory
(RDL), a hardware/software facility designed to take a GN&C design project from initial
inception through hardware-in-the-loop (HIL) testing and perform final GN&C system verifica-
tion. The operations approach for the RDL concentrated on the use of commercial, off-the-
shelf (COTS) hardware and software products to design and develop the GN&C system in
the form of graphical data flow diagrams, to automatically generate source code from these
diagrams and to run in a real-time, HIL environment under a Rapid Development paradigm.

The success of these efforts motivated further study and documentation of Rapid Develop-
ment methodologies. The initial goal was to formalize the successful methods used to date in
the GN&C RDL. Subsequently the team expanded on these methods, based on knowledge
gained from extensive search and study of the current literature. The resulting methodology
was documented as a guidebook for Rapid Development.

The methodology was tested and observed by applying it to a significant demonstration
project. Members of the project team reviewed the effectiveness of the methodology on an
ongoing basis. Improvements and corrections to the methodology and the RDL facilities and
infrastructure evolved along with the demonstration project. At the conclusion of the project,
the team met several times to reflect on the project, methodology, and lessons learned.
These reflections have been documented as JSC 38608, Deorbit Flight Software Demonstra-
tion Project Summary and JSC 38609, Deorbit Flight Software Demonstration Lessons
Learned.

Based on the observations and lessons learned during the demonstration project, we have
refined the rapid development methodology, as presented here. This is in step with the over-
all philosophy of Rapid Development: to revise the plan, based on lessons learned, before
moving on, thus reducing risk by finding problems early in the development cycle. In the spirit
of continuous improvement, the team welcomes comments and feedback, especially any
observations from those who have practical experience using this or a similar methodology.

Page 2

2.0 Introduction
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

2.0 Introduction

What is the best way to develop systems that include software as a significant component?
For many years, the “gold standard” of software development has been the use of structured
analysis and programming in the context of the “waterfall” model of a system life-cycle (see
Figure 1. The Traditional Waterfall Flight Software Development Approach on page 3). In
recent years, a modification to the waterfall model (Incremental Development) which parti-
tions large systems into independent deliverables and then sequentially applies the waterfall
model to each subset, has gained popularity.

2.1 Motivation for a new methodology

In the context of many of today’s systems problems, the waterfall model approach to system
development, and its modified incremental development approach, are often ineffective for a
variety of reasons.

As system complexity increases, it becomes more difficult to completely specify detailed
requirements in text form. The documents that attempt to describe these systems become
large and complex. The requirements may interact in intricate and complex ways. The review
and sign-off processes can be lengthy and expensive. Verifying that the requirements docu-
mentation is complete, accurate and consistent can be a daunting or impossible task.

As the problems to be addressed increase in complexity, the solution approaches become
less obvious. It may not be reasonable to ask a user community to enumerate requirements,
since technology may be able to offer approaches never before used. That is, we have gone
beyond using software to just duplicate human effort faster. Still, software developers usually
will not be experts in the domain of the problems to be solved, so it is similarly unrealistic to
depend solely on them to define a system. A cooperative effort, among domain experts and
technology experts, to discover system requirements can leverage the value added of new
systems. The waterfall methodology often does not accommodate this philosophy, since
requirements are developed independently and “thrown over the wall” to implementors who
may have no knowledge of the system beyond that written in the requirements documents.

The pace of change coupled with the potentially long lead time to develop systems often cre-
ates the dilemma of today’s new systems meeting yesterday’s requirements. This is espe-
cially true when system requirements are completely and contractually specified and fixed
early in the development cycle. If the requirements are handed off to implementors who are
completely separate from the domain experts, then implementors are likely to be unaware of
important changes that occur during the development cycle. This effect is compounded when
the problem domain exists in an area where the state-of-the-art is changing at a rapid pace.

In the GN&C domain, software development includes some additional challenges. Avionics
hardware often is being designed simultaneously with the software, so some requirements
and performance criteria may not be known during the early stages of software development.
Specialized operating environments and processor platforms impose challenges to creating
effective test environments. Often specialized languages and operating systems are dictated
by the real-time performance requirements, which may imply separate development and run-

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 2.2 Finding a better methodology for modern software development

Page 3

time environments. In such an environment, traditional test strategies, which perform integra-
tion and testing after coding is completed and often depend on “testing in” system quality, are
often ineffective and generally quite expensive.

Ultimately, the need for a better way to develop software systems is driven by the need to
manage the risks involved. These include development costs, maintenance costs, and the
more difficult to measure cost to an organization when it does not have the best system for
the customers’ needs. The bottom line is that we need better, faster, cheaper software sys-
tems.

Figure 1. The Traditional Waterfall Flight Software Development Approach

2.2 Finding a better methodology for modern software development

While many system development efforts still claim to use the waterfall model, in the trenches
programmers, analysts and project managers are devising more effective techniques. Today,
these have to be forced into the waterfall life-cycle for external consumption; that is, to pass
reviews, quality gates and sign-offs.

Is there a way to capture these more effective techniques and mold them into a life-cycle
model that is effective in today’s software engineering environment? Suggestions for doing
just that are presented in this guidebook.

Engineers skilled in particular
problem domains formulated
detailed requirements for the
systems & subsystems.

Unforeseen problems arose
deep into the schedule during
integrated testing & simulation.

INTEGRATED TESTING &

Guidance

Navigation etc.

Control

Rqmts.

Code

Other organizations inter-
preted the requirements and
translated them into com-
puter code.

System

Unit

Integrated

Testing

Tests

Subdivision

Component
Translation

REQUIREMENTS
DEFINITION

INTERPRETATION &
IMPLEMENTATION PROBLEM RESOLUTION

Doc.

Flight Computer

Avionics-Related Problems:

- Too Much Code
- Too Little Memory
- and more!

Mission Performance Problems:

- Rqmts. Error
- Translation Error
- Algorithm Deficiencies

Flight Simulation

- etc.

Page 4

2.3 The Expected Payoff
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

The project team incorporated practical experiences gained using techniques that facilitate
the Rapid Development of high quality systems, especially in the context of GN&C flight sys-
tems. Using what we have learned, over time and with testing and validation, guidelines for
Rapid Development and a system life-cycle model for Rapid Development were constructed.

This document encompasses several major topics relevant to Rapid Development of quality
software systems. These include:

• Important issues, concepts and practical ideas that, based on the experience of the
RDL staff and extensive research of the software community, support success in the
Rapid Development of high quality systems, especially for GN&C applications.

• The phases of a proposed new life-cycle model, including the major topics of interest
in each phase. This model is intended to be a formal systems engineering approach
to modern software development.

• Project management issues using a Rapid Development approach. Classical
development theory is rich with suggestions for managing the cost, quality, schedules
and risk associated with software development. In adopting a new life-cycle, these
issues must also be addressed.

• Processes that support software development and project management in a Rapid
Development environment.

• Collecting and evaluating metrics in a Rapid Development environment. After studying
the current state of the art of metrics data collection and evaluation, recommendations
are presented for a start up metrics program in a Rapid Development environment.
These include essential modifications to standard metrics so that they better support
the new methodology.

• Lexicons of important Rapid Development and metrics terminology.
• References.

2.3 The Expected Payoff

Experience with projects that used some of the techniques of the Rapid Development
methodology, indicates that high quality systems can be developed faster and with smaller, but
more integrated teams, using this technique as opposed to the waterfall approach.
Furthermore, experience shows that user satisfaction with the systems developed improves
when using Rapid Development techniques. By defining and then applying a rigorous model
that can consistently and dependably produce these results, it is anticipated that high quality
systems can be developed with less risk, lower cost, and better adherence to schedules.

Some reasons for the observed success of this methodology include:
• Complete integrated systems are built early in the development cycle.
• Early integrated systems are often low in fidelity, with stubs for unavailable software or

hardware components.
• “Systems” problems and interface problems are solved early.
• Due to the concurrent engineering approach, staffing requirements tend to be

relatively level for much to the development effort.
• Prototype software and hardware systems are not thrown away, they evolve into the

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 2.3 The Expected Payoff

Page 5

final product.
• Early integrated test builds customer and developer confidence.
• Milestones are determined with specific product focused objectives and acceptance

criteria.
• Detailed development is done by Domain Experts.
• Integrated Rapid Development project teams are formed around the skills and

expertise required to complete the project, including domain expertise, systems
expertise, and technical management

• The project team is responsible for:
- integrating all project elements, and
- Configuration Management and Quality Control, and
- ensuring the project remains product focused.

• The project team takes ownership of the entire development process and end product.
- End-to-end responsibility and ownership is more efficient and promotes a

more productive work environment.

Based on our knowledge and experience with Rapid Development, we also anticipate that
large on-going projects, and especially in the real-time GN&C domain, will benefit from:

• The use of COTS standards, languages, development environments, and test tools
• The use of commercial standards, processors, operating systems, and data bus

architectures
• Test facilities that more closely duplicate the operational system, as a result of these

first two
• Increased flexibility to use the developed systems in multiple facilities, for example

training and vehicle check out
• Increased capability for reuse, growing out of the use of COTS tools and industry

standards across multiple projects

One important aspect of Rapid Development, the Spiral Development Process is an
accelerated development process where the system requirements, design, code, test, and
integrated test processes are iterated on concurrently rather than being executed sequentially
and in a disjointed fashion. A spiral development process can make effective use of tools to
integrate the requirements analysis, design, code and test (including test coverage)
environments.

• An integrated environment involves the designer in all phases of product development.
• Changes anywhere in the requirements, design, or code are more easily implemented

everywhere.
• CASE tools, including graphical user interface (GUI) simulation and modeling tools,

coupled with autocode generation and real-time processor testing, are most effective
in the hands of the rapid development team and speed the spiral development
process.

The development tools available today and anticipated for the near future, such as CASE GUI
simulation and modeling tools, are not just more advanced programming languages.

Page 6

2.3 The Expected Payoff
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

• Tools support integrated analysis, design coding and testing efforts.
• If an integrated toolset is not used in the requirements and design phase, then an

additional step to translate logical flow into data-flow code is required.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 3.0 Guidelines for Rapid Development

Page 7

3.0 Guidelines for Rapid Development

These are some of the most important features of the Rapid Development methodology that
is successfully evolving in the GN&C RDL and as a result of this research:

3.1 Project Staff

Creation of a small core team that is talented, knowledgeable in all key areas of the project,
and able to follow the project for its entire life-cycle is critical. Most of the team members
should be dedicated to the project full time especially after the initial concept development
phase is completed. Rapid Development methods depend on rapid situation evaluation and
response, and leveraging knowledge from one phase to the next. Construct the team carefully,
and try to keep them together. If possible, once a team establishes a strong working
relationship it should be maintained even across projects (although modified as needed to
achieve the critical mix of expertise for each project). A working Rapid Development team is
a valuable asset.

Involve the users and customers. Get commitments from them to be involved in solving the
problems, reviewing the system, acceptance testing, etc. Make sure the project plan
emphasizes the importance of this involvement. Part of what makes this approach rapid is
getting things right as soon as possible to minimize misinterpretation, redesign, rewrites and
change requests to already completed work. A close working relationship among the project
team members and the users and customers helps make sure that the delivered system is the
desired system

Users/Customers may exhibit marked differences in preferences and satisfaction levels. It is
generally a mistake to assume that the developers will be able to negotiate a universally
acceptable solution. Assign someone to have authority and responsibility for resolving
conflicting requirements and desires.

Because the project team members are all intimately involved in the design and development,
they may not maintain the objectivity necessary for full, independent, validation and
verification. Plan to recruit knowledgeable sources or hold a periodic independent review
outside the project team to assist with these efforts.

The powerful capabilities of some modern development environments allow domain experts,
who are not necessarily software experts, to design, implement and test complex software. It
is sometimes tempting to ignore or under-represent software systems specialist expertise in
a Rapid Development Team. In general, this software engineering expertise remains
important and should not be neglected in the team makeup, especially with respect to
architecture, integration, and performance aspects of a system. This emphasis is especially
critical when dealing with real-time, embedded, safety critical systems. Similarly, the capability
to perform traditional project control functions, such as configuration management and test
planning, should be represented on the team.

3.2 Tools to Support Rapid Development

The use of advanced software engineering tools can greatly improve productivity. Graphical
development tools, especially when combined with auto-coders, provide a powerful

Page 8

3.2 Tools to Support Rapid Development
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

development environment which can be used by domain experts as well as software
professionals. Integrated simulation capability can put a powerful, accessible, realistic, and
easy to use testing environment in the hands of implementors. Investing in appropriate tools
and standards can add to the flexibility and robustness of the system, and potentially improve
the ability of the team to respond to problems and changes, by supporting multiple operational
and test configurations.

Automated support for design, coding, testing, documentation, and configuration
management are among the desirable options. The use of an automatic code generator,
especially, mitigates the need to track and solve many problem areas, such as syntax errors,
typographical errors, and some common programming errors. (However, the quality of auto-
generated code needs special attention, due to the current state-of-the-art of this type of tool.
This seems to be improving as the industry matures and more vendors are entering the
market.)

Historically, real time systems often depended on “home-built” custom languages, operating
systems, development and test environments, data buses, and even processor platforms.
These became necessary when COTS products were not available to support the application
requirements for speed, scheduling precision, size of executable code, process
synchronization, fault tolerance or hardware robustness. Today, more and more often COTS
products are available to support all aspects of these systems. Now, it is generally quite
satisfactory and overall cheaper to use these products rather than design, implement,
maintain and support custom development of the hardware and system software, including the
development and test environment.

Advanced quality assessment tools can also be quite useful. This is an area that is coming of
age, and major improvements are anticipated in the near future. When added to the
developers’ toolset, these tools perform SR&QA types of analysis early in development, to
support efforts to build quality into systems from the earliest releases.

Similarly, advanced tools to support configuration management, documentation control,
discrepancy reports, change requests, and other support process areas, can be used to
improve both inter-project communication and productivity. Even simple measures such as
making all project documentation available on web pages will eliminate sources of error and
prove useful to improving developer productivity, since all team members will have access to
all current documentation. Additional tools which may, for example, correlate test results to
discrepancy reports and release versions can also be useful and are becoming available for
an increasing number of platforms and development environments.

Test plans, test results, discrepancy reports and resulting modifications can all be stored
electronically and be accessible across the network. Using currently available tools and web-
based technology, it is possible to link the information in the documents, showing, for example,
which requirements are tested by each test case and even linking to the test results. The
electronic access and linking are powerful ways to improve access to information and to
eliminate errors of transcription and oversight. In addition, the links can give important insights
into progress and status.

Plan for element reuse. Organize code to facilitate reuse. Invest in hardware, software and

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 3.3 Approaching the Problem

Page 9

staff to create and maintain a reuse library. The library should support browsing capability, with
searchable attributes, and include tailoring instructions for library elements. Investment
upfront in reuse pays off long term. There are costs associated with establishing, populating
and maintaining a reuse library. Management and budget support is crucial.

Implement automated release build capability to consistently interact with configuration
management and build releases from known libraries.

Tools to support Rapid Development are currently proliferating rapidly, and capabilities
increase frequently. Plan to invest time investigating and evaluating new tools on a regular
basis. As useful and appropriate tools become available or improve, add the new capability to
the toolset. Do not assume that the tool used for one project is best for the next, or try to force
fit a tool where it does not belong just because the team is already familiar with it or the lab
already owns it. Choose the best tools for any particular task. Fast improvements in the quality
and capability of these tools mean that it can be important and effective to invest the effort
required to stay on the leading edge of the Rapid Development technology.

3.3 Approaching the Problem

Work the system architecture, including interface requirements, inter-project dependencies,
test requirements and validation strategies, very early in the project life-cycle. Under classical
development approaches, integration, communication, and interface issues have frequently
been major problems. Under Rapid Development, it is recommended that end-to-end
integration of the architecture begin early in the development cycle, so that many of these
types of problems are resolved before the rest of the system has been developed, or
addressed throughout the development. Dummy software stubs are usually sufficient to test
the software and hardware connectivity in the early phases. Simulations, using mathematical
models, are typically substituted for planned hardware modules. Retest the architecture as
actual hardware and software become available. It is crucial to identify and validate the system
architecture as early as possible.

Once the system architecture is in place and functioning, and before proceeding with more
detailed implementation, consider addressing the issue of useful system utility functions and
any special project development standards. Create the project utility library from existing
libraries if possible, or at least use the current project to begin or augment the reuse library.
Perform code inspections on the utility functions; these are important building blocks. The
team must agree on and be familiar with their function. And, building and inspecting these
utilities is a good way to solidify project coding and development standards.

Early documentation should emphasize functional requirements rather than design and
implementation issues. Design documentation should emphasize system architecture and
interface requirements. Detail level for specifications should vary depending on risk level of the
system element; defer detailed elaboration of the low risk elements until the high-risk
elements of the design have stabilized.

Start tackling the hard problems first. These are high risk areas for a project. Use prototyping
to test alternatives and choose the best (or reduce the set by eliminating alternatives found to
be unworkable). As a project progresses, risk and uncertainty will be reduced by this

Page 10

3.4 Implementation Hints
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

approach. Some of these prototypes may be throw-aways. Once simple prototypes have
helped find the correct way to solve a particular problem, go back and implement or evolve a
production version (usually more robust and with more error checking and recovery modes
than the prototype).

Perform hardware-in-the-loop testing earlier in the development cycle than has been
historically common. As soon as actual flight or support hardware is available, and testing with
it is practical, integrate it into the system, at least for testing. Again, the emphasis is on
identifying potential problems as soon as possible and fixing them while it is still relatively easy
to do so (i.e., without major reworks).

As much as possible, “as-built” documentation should be automatically generated by the
software engineering tools. Documents should evolve with the system; add information to the
appropriate documents when it is known and stable, delaying complete formal documentation
of specific issues until after problems have been surfaced and successfully resolved.

3.4 Implementation Hints

Careful planning and a firm resolve are required to guard against “requirements creep” under
a Rapid Development methodology model. This is the tendency to continue to demand
additional functionality from a system until it has crept beyond the original scope of the project.
This is a special risk in this type of development since one of the key characteristics of Rapid
Development is the evolution of (detailed) requirements during the development phases. Clear
traceability of requirements to distinguish “derived” requirements from “new” requirements is
necessary. Set goals for each evolution cycle and for the overall project that will clearly identify
when the project is finished. Consider the cost/benefit trade-offs whenever plans are modified.

Create and maintain automated test sequences for each system developed. Augment and
rerun the test series to validate that system changes have not interfered adversely with
existing capability. This applies to both development and maintenance cycles.

Plan for project turnover, from development to sustaining engineering, in parallel with design
and development by involving the users and transition team. This can begin as soon as the
design stabilizes.

Rapid Development does not imply ad hoc development. It is a fast paced, dynamic
environment, typically with tight schedules and high expectations. Careful planning and
monitoring is essential for success.

Many of the observations regarding the effectiveness of Rapid Development techniques have
been learned and improved while working on small to medium sized projects. The concepts
need additional testing on large projects, since issues of scale may well demand modifications
to the techniques.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 4.0 A Proposed Life-Cycle Model

Page 11

4.0 A Proposed Life-Cycle Model

In the long run, any systems development effort will have many common tasks, no matter what
methodology is used. That is, requirements must be determined, code must be written, tested
and validated, documentation must be written, and the project must be managed. There are
various ways to order and perform these functions. The life-cycle model proposed in this
document uses as its basis the model which has been successfully evolving in the GN&C RDL
and augments it in ways that are designed to improve project management, software control,
and verification and validation.

The proposed life-cycle model, from idea to obsolescence, including both system
development and system maintenance, is comprised of the following major phases (also see
Figure 2. Life-Cycle Major Phases on page 11):

•Project Initiation

•Project Evaluation

•Conceptualization

•Evolution

•Finalization

•Installation

•Sustaining Engineering

•Shutdown

Figure 2. Life-Cycle Major Phases

The high level objectives of each phase are discussed below. A later section will address
support processes for the model.

This document primarily addresses the development phases of the project life-cycle model.
Under the Rapid Development paradigm, the guiding concept is “build a little, test a little, fly a
little”. This approach tends to focus on design problems, technical issues, and implementation
errors early in the development, before they propagate and while they are easier and cheaper
to fix (relative to modifications made closer to or after delivery of a completed system). Using
this approach, it is critical to maintain interaction with the target community (users and
customers) throughout the development cycle. Similarly, documentation, project plans,
schedules, and software releases are living entities under Rapid Development, to be revised
and augmented as a project progresses, as more is learned about the problem to be solved,
and as more details evolve and are implemented and validated. These critical interfaces are

Project Concept- Evolve Finalize InstallInitiation
Project

Evaluation ualize Sustain Shutdown

development maintenance

Page 12

4.0 A Proposed Life-Cycle Model
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

illustrated in Figure 3. Rapid Development Team Critical Interfaces on page 12.

Figure 3. Rapid Development Team Critical Interfaces

Users and Customers

Project Team

Documentation, Plans, Software

(Domain Experts, Systems Experts, Technical Management)

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.0 The Development Phases of the Life-Cycle Model

Page 13

5.0 The Development Phases of the Life-Cycle Model

5.1 High Level Objectives of Project Initiation Phase

The Project Initiation phase is the first step in determining new and potentially promising
projects deserving of further study. The overall goal is to determine whether a project is
needed, feasible (both in technical and budgetary terms), and compatible with the goals of the
organization. Typically this phase will be user/customer initiated.

The purpose of this phase is to collect and present sufficient information about the problem
and the proposed system, or system upgrade, to support a management decision about
whether to proceed to the next project phase. This will include information about the skills
required to perform the next phase.

5.1.1 The Proposal

The Initiation phase begins when someone identifies a problem and proposes to develop or
upgrade a system to help solve it. The first step is to identify and state the problem to be
solved.

Determine the high level functional requirements which must be met in order to solve the
problem. In this phase, there is no need to define how the problem should be solved.
Requirements need not be complete or detailed. Any hard requirements must be stated.
Document what is known about the problem. Have customers complained? Are deadlines
being missed? Is there a budget problem? Have changes occurred which require support in
an entirely new area? In general, why must this problem be addressed?

State the known issues and identify areas of uncertainty. If there are known risks, identify them
along with any assessments of the risk level and suggestions for managing the risk.

What will determine whether the problem has been solved? In general terms, state the
success criteria from a business standpoint as well as technical and performance criteria.
Include any known coordination issues with other projects or deadlines, as well as any known
interface requirements.

Initial feasibility analysis is appropriate, but extensive analysis is not necessary at this phase.
Just state what is known or an informed belief about the feasibility of the proposed project.
Suggest alternative solution strategies. Identify the known relationships between the
proposed project and other projects, including existing systems, systems under development,
and others being proposed.

5.1.2 The Decision to Proceed

If the proposal is accepted, a decision is made to proceed to the Project Evaluation phase.
This is not a commitment to the full project life-cycle. It is a commitment to further investigate
the problem and the proposal.

To close out this phase, management should commit the necessary resources to the next
phase. These include personnel, budget, equipment and training.

Page 14

5.2 High Level Objectives of Project Evaluation
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Personnel include a project advocate, or leader, who leads a rapid development team of
systems experts who have or will be trained in the necessary skills and domain experts with
expert understanding of the problem being addressed.

The next phase is not intended to be a full detailed requirements analysis. Management
should clearly outline the budget, equipment and time frame which are being committed to the
evaluation phase. Initial estimates of the overall project costs should also be made at this time.
These will undergo refinement in succeeding project phases, if authorized.

It may also be appropriate to identify and pursue training and purchasing requirements,
especially if they are needed for the next phase or if long lead times are involved and the
project is likely to be funded. Are the training and purchase requirements consistent with
maintaining state of the art capability in Rapid Development? If so, then making the investment
now has the double payoff of improving overall capability while contributing to the momentum
of the current project.

5.2 High Level Objectives of Project Evaluation

Here is where the project team really begins to look at how to solve the problem at hand.
Working with the domain experts, the team will study in detail the problem to be solved.
Rather than assign individuals to write various parts of the requirements, the core team
should initially meet as a group to exchange knowledge about the problem, discuss solution
strategies, and consider options. The goals in this phase are to understand the problem and
devise a solution strategy.

5.2.1 The Evaluation

The high level functional requirements will be produced in this phase, but they may look a bit
different from traditional requirements. There may be areas in which two or more alternative
sets of requirements are identified as possible solutions, or the requirement may be stated as
a range. Some requirements may be desirable, others may be strictly required. Some areas
may be unknown.

Part of this effort is feasibility analysis. The team should suggest and evaluate alternative
solution strategies. These evaluations should consider (at least) cost, risk and probable out-
come. Are there interdependencies with other projects, and if so how will that effect the feasi-
bility of this effort? This may include technical dependency issues, but may also involve
schedule dependencies and staff and resource sharing. Can these dependencies be
exploited in ways that benefit this and other projects? At the conclusion of this phase, most
alternatives should have been eliminated. It is, however, perfectly acceptable to enter into the
implementation phases with some of these decisions still unmade, so long as the project
plans include a strategy for further evaluation and decision making. The evaluation may
include, for example, prototyping parts of the system in a variety of ways and applying selec-
tion criteria and tests to aid in decision making.

Another part of this phase is risk assessment. Identify the potential show stoppers, the really
difficult parts of the problem. The difficulties may be technical, budgetary, time related, com-

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.2 High Level Objectives of Project Evaluation

Page 15

plexity related, or uncertainty about the problem or domain. Assess the level of risk. Compare
various possible solutions. What is the impact of not doing this project, including risk to other
projects or programs? Cost/benefit analysis may be useful. Plans for controlling risk should
include early attention to the high risk areas, with reviews and decision points built into the
schedule to reevaluate the risk potential. This will tend to contain the risks, by delaying imple-
mentation of the majority of the system until after the most challenging areas have been suc-
cessfully designed. Similarly, in the project plans, detailed design of the more straight forward
parts of the system should be delayed until after the design for the high risk areas has stabi-
lized. The well defined, low risk, parts of the project should be relatively easy to design
around the tough parts after they have been solved. The reverse strategy can be quite costly,
and often involves extensive redesign and rewrites and can result in code that is more diffi-
cult to maintain.

Other issues that the project team should address in this phase include safety, security and
privacy concerns, and initial estimates of the types and quantities of resources (staff, hard-
ware, commercial software, other) required to implement the system.

When all of these issues are well understood, the team should choose a development strat-
egy for the project. While this document is emphasizing a new Rapid Development methodol-
ogy, each project should carefully consider whether this or another strategy is more
appropriate for the problem being addressed.

For large projects, the team may wish to subdivide the effort into smaller efforts. In this case,
the project partitioning should be defined, and a work breakdown structure should be
defined. Project teams must be identified for each partition, and each team should proceed
with development, beginning with this (Project Evaluation) phase. Plans for coordination and
integration of the partitioned efforts must be specified.

5.2.2 Choosing a Development Strategy

Many of the ideas for improved software development methodology can be applied to any
project. Yet each problem is different, and the project team needs to decide what is the best
methodology to solve a particular problem. Tailor the guidelines for maximum success, and
document the process to be used for each project as part of the project plan.

We distinguish among three primary approaches to software implementation: Waterfall,
Incremental, and Evolutionary.

5.2.2.1 The Waterfall Model

The traditional Waterfall approach is characterized by distinct, sequential development
phases, with separate hardware and software development paths and no integration until late
in the life cycle. The exact number of phases and their definition may vary somewhat
depending on project size and organization culture, but typically include the following:

- Requirements Definition
- Requirements Translation (System Design) and Review
- Software Design and Coding

Page 16

5.2 High Level Objectives of Project Evaluation
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

- Software Test
- Integrated Test

The phases are often organized into “silos”, or distinct organizations often located far apart.
Each technology discipline takes ownership of only a portion of the final product, and for only
a certain phase of the program. Major milestones are well defined, and under government
standards typically include:

• SRR: System Requirements Review:
• SDR: System Design Review
• SSR: Software Specification Review
• PDR: Preliminary Design Review
• CDR: Critical Design Review
• TRR: Test Readiness Review
• PCA, FCA: Physical and Functional Configuration Audits
• FQR: Formal Qualification Review

The classic Waterfall development model is best used when system requirements are
straightforward, well understood and stable. The problem to be solved should be one that is
well understood, with standard solutions. Funding should be stable and predictable.

5.2.2.2 The Incremental Model

The Incremental Model is characterized by a series of waterfall cycles that together complete
a project. Usually only 2 or 3 cycles will be used for medium sized projects, often as many as
5 to 10 cycles for large complex systems. A system is delivered after each cycle with some
subset of the final desired functionality but with each delivered function complete. For
example, a timekeeping system might deliver the capability to support weekly operations in
cycle one, periodic reporting functions in cycle two, and planning and forecasting functions in
cycle three. This approach partitions the total problem to deliver some useful capability earlier
than it would be possible to deliver the entire system. The incremental model is sometimes
(mistakenly) used to claim that “Rapid Development” is being used within the standard
government milestones.

An Incremental development strategy is recommended when the most critical functions
required of the system are well understood and the project is not small. The system must
lend itself to being divided into separate, complete, useful, stand-alone subsystems. These
subsystems will usually be of varying levels of criticality, with the more critical functions
implemented in earlier deliveries. The incremental approach helps ensure that highly critical
functionality gets delivered as soon as possible, which is especially important under uncer-
tain funding conditions. Pre-planned product improvement cycles are based on the Incre-
mental Model.

5.2.2.3 The Evolutionary Model

In the Evolutionary Model, an integrated system is developed early and incrementally
improved toward the final goal. The driving philosophy is “Build a little, Test a little, Fly a little.”

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.2 High Level Objectives of Project Evaluation

Page 17

The evolutionary model resembles, but is not the same as, the original Spiral Development
model as presented in the literature (especially Boehm, 1988). The original Spiral model is a
type of evolutionary model in which the spirals are driven by a philosophy of risk reduction.
Another similar approach presented in the literature relies primarily on rapid prototyping to
discover system requirements before proceeding with implementation.

The Evolutionary Model builds on these approaches. A cyclic process is used to rapidly
execute a development cycle. All activities (detailed requirements discovery, design, coding,
testing) are essentially performed concurrently within a cycle. Requirements tend to evolve
with the design. Each cycle has specific goals. The goals may be chosen, for example, to
contain risk, achieve a desired level of fidelity, implement specific functions, or coordinate with
other project schedules. The results of each cycle help determine the goals for succeeding
cycles. Each cycle results in a complete, end-to-end, system. Hardware-in-the-loop testing is
initiated earlier in the development cycle than with traditional methods. A rapid development
team includes all the necessary skills and expertise and takes ownership of the entire process
and end product.

In an Evolutionary Development process, the level of fidelity of the project increases over time
until it is completed. The project is split into a series of logical milestones, or “Drops”. Each
Drop represents an increased level of fidelity.

A Evolutionary Spiral Development methodology is recommended when:
• System requirements are vague or incomplete.
• The problem to be solved is new or not well understood. Solutions unknown, uncertain,

or not obvious.
• Software development must occur concurrently with hardware development,

contributing to the risk and uncertainty.

5.2.3 Rapid Prototyping

Any of these three development strategies, but especially the Evolutionary Development
model, may be enhanced by the use of rapid prototyping techniques. That is, for those
aspects of the system for which the best solution is not known, “quick and dirty” prototypes of
alternatives can be employed to aid in decision making and drive the final design. These are
typically not robust enough to be delivered, and are used to illuminate problems and alterna-
tives and solidify design and implementation approach.

In many cases, these prototypes can be evolved to become the delivered code. In some
cases, the prototypes are too rough, and it is more efficient to rewrite the prototype module
as a robust system component. In either case, by using the same person or team to do both
prototyping and final development, all of the knowledge gained in the prototyping effort is
used in final implementation, and this continuity tends to improve both the speed and quality
of implementation.

5.2.4 Hybrid Approaches

In many cases, some hybrid approach may be preferred. This is especially true for relatively

Page 18

5.3 High Level Objectives of Conceptualization Using an Evolutionary Spiral Development Life-Cycle
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

large projects where the various project partitions may be developed using different
approaches, or the high level project management may proceed differently from detailed sub-
system project management.

5.2.5 The GN&C RDL Preferred Model

In the GN&C RDL, an Evolutionary Spiral Development methodology enhanced by Rapid
Prototyping techniques has been successfully applied. This approach will be assumed for the
remainder of this document (see Figure 4. Evolutionary Development Life-Cycle Model on
page 18).

Figure 4. Evolutionary Development Life-Cycle Model

5.3 High Level Objectives of Conceptualization Using an Evolutionary Spiral
Development Life-Cycle

Entering this phase, the project team has a good understanding of the problem to be solved,
the risks involved, possible solution strategies, and has chosen a development approach.

In the conceptualization phase, the team prepares for implementation. The software
engineering environment that will be used for implementation, including tools, facilities,

Conceptualize

cycle 1
detailed plan

Evolve, cycle 1

cycle 2
detailed plan

Evolve, cycle 2

cycle 3
detailed plan

Evolve, cycle n

...

(repeat as specified in plan)

Finalize Install

Initiate Evaluate

Users and Customers

Documentation, Plans, Software

Rapid Development Team Activities

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.3 High Level Objectives of Conceptualization Using an Evolutionary Spiral Development Life-

Page 19

hardware, processes and procedures, should be defined, procured if necessary, and installed.

The primary deliverables of this phase are the system level functional requirements, the high
level system architecture, and the project implementation plans. If applicable, an analysis of
dependencies of this project on other projects and systems may also be produced in this
phase.

5.3.1 The Functional Requirements

The functional requirements document should be fairly detailed as it will drive the system
implementation in later phases. Note that no detailed requirements or detailed design
document is completed prior to implementation. In our evolutionary Rapid Development
environment, implementation and design details will be discovered as the system is
implemented. It is therefore imperative that the functional requirements document be a clear,
solid and complete description of the required functionality of the system.

5.3.2 The System Architecture

High level system architecture may be specified by diagrams, but whenever possible it is also
desirable to implement a working prototype of the architecture design. This can be an
extremely low fidelity implementation, with most functional modules stubbed out, if necessary.
By implementing an integrated end-to-end prototype early in development of the system,
many interface issues can be solved before the system has been coded. Experience has
shown that these problems are easier and cheaper to fix early in the implementation of a
system, when less code will have to be rewritten to accommodate new interfaces. To the
extent possible, it is desirable to perform hardware-in-the-loop testing on this early system
prototype. Here again, the goal is to identify and fix potential interface problems early in the
development of the system.

After any problems that surfaced have been solved, the resulting prototype (often called the
Phase Zero implementation) serves as the initial high level system design. Note that the
design is implicit in the successful implementation, rather than design driving the
implementation. This gives implementors flexibility to evolve the best design that both works
and fits the functional requirements. “As-built” design documents should be produced, and
should evolve with the system’s implementation, but it should be possible to automate much
of the work to prepare such documentation.

5.3.3 System Dependency Analysis

In some cases, a system dependency analysis may be useful.

The dependency analysis should include functional and data dependencies between this and
other systems, existing or planned. Any assumptions made for this system that imply levying
requirements on other systems should be called out, and such information should be
communicated to the appropriate project teams.

Dependency analysis should also include reusability analysis. Look in the reuse library for
existing code that can be used on the current project, or can be easily modified for use on the
current project. Also, identify areas where work done for this project could benefit other

Page 20

5.3 High Level Objectives of Conceptualization Using an Evolutionary Spiral Development Life-Cycle
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

projects.

5.3.4 The Project Implementation Plans

Two levels of project implementation plans should be produced. The overall implementation
plan will show plans for the remainder of the development phases of the system life-cycle at
a moderate level of detail. A more detailed plan will be prepared for the cycle which
immediately follows this one, Cycle One of System Evolution.

It may be tempting to achieve verbal, ad hoc, team consensus on release plans, especially
detailed plans for a single cycle, and “save time” by avoiding the formal effort to write the plan.
While these plans need not be excessively detailed documents, it is important to capture the
major points in writing and that the plan be accessible to and used by the team to drive
schedules and priorities of individual team members, maintain coordination among the team,
and encourage conformance to plans and schedules.

5.3.4.1 Implementation Plan for remainder of project development

The overall plan for implementation of the system should include:
• Goals
• Scope of Effort
• User/Customer responsibilities
• Deliverables
• Number of Evolution cycles (Build strategy)
• System level objectives of project and of each cycle
• Preliminary Project Schedule
• Cost Estimates
• Procurement plan
• Verification/validation requirements

- (including Test approach, strategy, and requirements)
• Configuration management plans
• Documentation requirements

The implementation plan is not a static document. As implementation progresses, it should be
updated (at least at the end of each evolutionary cycle) to reflect current knowledge of the
project. In general, certainty should increase with each cycle and plan update.

5.3.4.2 Detailed Plan for cycle one of System Evolution

Initially, the detailed plan for evolution cycle one should be prepared. Then, for each evolution
cycle, one of the exit conditions of the cycle is the completion of a detailed plan for the next
cycle. Lessons learned in the cycle and implications of the detailed plan for the next cycle may
impact the overall implementation plan, in which case it should be updated as well.

Topics which should be considered, and included as relevant, for the cycle detail plan include:
• objectives

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.4 High Level Objectives of System Evolution Phase

Page 21

• constraints
• alternatives
• risk areas
• schedule
• cost estimates
• planned deliveries, including documentation and updates
• Verification/validation plans

- test strategy, including HIL, OIL, and end-to-end integration tests
• configuration management issues

5.4 High Level Objectives of System Evolution Phase

This is the phase where the majority of system implementation takes place. The primary goal
is to evolve the system according to Overall Plan developed in the Conceptualization Phase.

The evolutionary phase will typically be divided into several sub-phases, called “cycles”. The
number of cycles planned and the major system level objectives for each cycle will have been
defined during the Conceptualization phase. As a rule of thumb, objectives should get more
concrete with each succeeding cycle.

Typically, the plan for a cycle will call for maturing some subset of the system functions to
specified levels. It is often a good development strategy to concentrate on the more difficult,
less understood, more risky modules first, as prototypes. This way, each cycle reduces
uncertainty in the project and its budget and schedule.

Each cycle should include user/customer evaluation and documented feedback. The follow-
ing cycle should address this feedback. This increases the likelihood of achieving a high level
of user and customer satisfaction with the final product.

Page 22

5.4 High Level Objectives of System Evolution Phase
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Figure 5. One Cycle in the Evolution Phase: Additional Detail

Lessons learned in any cycle may lead the team to revise the overall plan developed in the
previous (Conceptualization) phase. In this case, it is important to focus on the project goals
and carefully evaluate the benefits of the changes versus the costs of not making the
changes. Find the correct level of change for success while keeping the project on track and
avoiding “requirements creep”.

5.4.1 Objectives of Each Evolutionary Cycle

The principal objective of each cycle of the evolution phase is to complete the interim products
and deliverables that meet the planned goals for that cycle.

Deliverables for each cycle include software, test cases, and documentation. All should be
placed under configuration management. To complete a cycle, the software delivered should
have completed unit testing, integration testing and validation and evaluation by users or cus-
tomers as appropriate. Documentation produced in previous phases or evolutionary cycles
should be updated to show all revisions and additions. This will include at a minimum the
functional requirements, system architecture and overall project plan. As the system evolves,
design and implementation details should also be captured in as-built system design docu-
mentation. Other documents, products and deliverables may be required, as called for in the
overall implementation plan and the detailed plan for the cycle.

Each cycle should conclude with a report which details the results of that cycle. The report
should specifically address the planned objectives of that cycle. Were the objectives of the
cycle met? How, or why not? What alternatives are available for missed objectives? The

Automatically
Generate

Code
System
Testing

Target
Processor

Testing

Graphically

System
Design

Simulate
System

Behavior

* includes current architecture,
design, documentation, released
code, test strategy, & project plan,

External
Interface
Testing

Real Time Testing

*Overall Project Plan & Status

Unit
Testing

Cycle Plan Next Cycle

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.4 High Level Objectives of System Evolution Phase

Page 23

report should include response to user input from the previous cycle. This could include
design or implementation changes, cost/benefit trade-offs, actions taken, results, or other
responses. A user evaluation for this cycle should also be included.

Depending on the plan for the cycle and the results achieved, other information may be
appropriate to include in the cycle report. It could address design constraints that were
included, along with rationale. Where alternatives were previously identified, the report
should indicate which alternative was selected, the selection criteria used, and the implica-
tions of the decision on this and other systems.

Other issues which need to be addressed, as appropriate, include:
• risk resolution/results
• schedule impacts, modifications
• cost
• deliveries
• test results

Before completing the cycle, the project team should reassess feasibility in light of results
achieved in this cycle. A detailed plan should be prepared for the following cycle. Lessons
learned in this cycle, as well as plans for the next cycle, may impact the overall implementation
plan. If this is the case, then the implementation plan must be updated as well. Update other
documentation, such as system architecture and as-built design documents, as appropriate.

The first cycle should emphasize system architecture over detailed functionality. It forms the
backbone for the evolving system, and should include end-to-end integration of all planned
system modules and their interfaces, both internal and external to the project. At the
completion of cycle one, many of the modules may have little functionality except as place
holders, and interfaces may be vague, but all major system components and the way they fit
together should be well understood.

Cycle two should emphasize system utilities, project development standards, and analysis of
available code for reuse.

Appropriate levels of formal testing, verification and validation should be included in each
cycle. A careful balance must be struck between complete testing, superfluous testing, and
redundant testing of each cycle release. For example, it is probably a waste of time to
completely test detailed functionality of a low fidelity early release. There may not even be
detailed specifications for low fidelity interim models, since they are planned to evolve to the
final system. Also, some modules may change little from one cycle to the next. For this case,
full scale testing may be redundant. Still, each release forms the basis for the next, so formal
testing is required to assure that the basis is complete and accurate. Significant engineering
judgement is required in deciding test requirements. For real-time systems, timing issues
should be addressed in each cycle’s test plan.

In this environment, developers will typically have powerful simulation and test capability
available in the development environment. When this is the case, unit test drivers, data, and
results can often be delivered with the code. In this case, it is appropriate for formal testing to
primarily emphasize module, subsystem, and system interfaces, rather than unit functionality.

Page 24

5.5 High Level Objectives of Finalization Phase
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Formal code inspections of the evolving system are recommended. Since this methodology
establishes low-fidelity end-to-end functionality early in development, and then evolves the
modules to full detail over several releases, it is generally not reasonable to inspect all
modules for all releases. A module should be inspected when it has reached a maturity level
that includes substantially all of its expected functionality, or earlier if the developer of that
module requests it. And modules should be reinspected if substantially modified for any
subsequent release. It is appropriate to rely on the best engineering judgement of the
developers to make the qualitative decisions on what constitutes “substantial”. For modules
developed with graphics development tools and auto-code generators, inspections should be
performed on the block diagrams rather than the generated source code.

Augment the core team to include users/operators of the system as appropriate, but especially
in the design, prototyping and inspection of user interfaces and displays.

When possible, as well as available, the use of advanced software development, test and
quality assurance tools can further leverage productivity and quality, especially in this phase.
If such tools are used, it is important to assure that sufficient licenses and platforms are
available to the team, so as to avoid resource bottlenecks which may impede project
momentum.

Rarely do projects proceed independent of outside schedule pressures. These may be
motivated, for example, by inter-project dependencies or by the need to demonstrate interim
releases. Care should be taken to include these dependencies in the evolutionary plans, to
avoid significant schedule impacts. Plan for the need to work higher levels of integration and
test, and for the (likely) resulting rework. This is especially important when the final system will
integrate multiple applications developed by multiple organizations.

Migrate new work to reuse library, as appropriate.

There are some questions still to be resolved about the best approach for independent V&V
of early releases. Full IV&V of each release is likely to be expensive, time consuming and
overkill, and too much close cooperation with the development team could compromise some
of the objectivity of the IV&V team. But there are also some advantages to involving the IV&V
team early. Consistent with the Rapid Development philosophy, any problems which the IV&V
team can identify early should be easier and cheaper to fix, compared to finding the problems
after development is completed. By working with the IV&V team early, developers may
become more knowledgeable about the testing capability desired by the IV&V team and be
able to build it into the system; this could later facilitate an easier IV&V effort. And by working
with early releases, IV&V team members may be more familiar with the system and able to
proceed faster with final IV&V.

5.5 High Level Objectives of Finalization Phase

This phase is really just the last planned evolution cycle, but there should not be any remain-
ing issues when this cycle completes. Note that when using evolutionary and prototyping
techniques to speed system development, performance tuning and stress testing often are
quite critical activities at this point in the development.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 5.6 High Level Objectives of Installation Phase

Page 25

Primary elements of this phase include:
• Final Performance tuning
• Stress testing
• Finalize documentation
• IV&V
• User, customer and developer sign-offs
• Establish plans for user support, maintenance and upgrades
• Installation and Transition plans
• Resolve remaining discrepancy reports
• Archive final test results
• Complete migration of identified modules to reuse library
• Document all known successful configurations (e.g., processors, operating systems,

auto-coded languages, simulation and test venues, etc.) and instructions for building
the system in the various configurations

5.6 High Level Objectives of Installation Phase

In the Installation phase, the system is made available for its intended use. Activities include
setting up scripts and procedures for everyday use of the system. User support, maintenance
and upgrade plans, from the previous phase, should be initiated. Support for user training and
start-up activities is required.

Since at least some of the user community have been involved in the development process,
the Rapid Development methodology should facilitate smooth installation of the completed
system.

5.7 Summary

The figure below restates, in summary fashion, the major phases of development under the
proposed Rapid Development life-cycle model. The previous sections have discussed primary
activities of each phase. Some of the most important of these are called out again in the figure.
To support these activities, key software engineering support processes will be outlined in a
later section.

Page 26

5.7 Summary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

__

Figure 6. Project Management Milestones

__

Initiate Conceptualize Evolve Finalize Install

1 2 3 4 5

1: Statement of problem to be solved; Decision (continue project or not)*;

2: Feasibility & Risk Assessment report; Development Strategy selection

3: Overall project plan, including reuse, software engineering tools, hardware, build

4: After each cycle: Status wrt current cycle plan and overall project plan; Detailed plan

5: Final Documentation; Sign-offs; Installation & Transition plans; Maintenance

if project to be continued: Composition of design team; Commit Budget for next phase.

* This decision point is implied for each phase, even though not explicitly stated.

Evaluate

6

 strategy; Detailed plan for cycle 1; High level system architecture prototype;

 for next cycle; Updated project plan

6: Installation completed; Start-up completed; Training completed

& support plans

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 6.0 The Maintenance Phases of the Life-Cycle Model

Page 27

6.0 The Maintenance Phases of the Life-Cycle Model

In the most part, the maintenance phases of this lifecycle model will be quite similar to
traditional methods. They will differ primarily in the emphasis on life expectancy evaluation (for
long term planning), in the Sustaining Engineering phase, and reuse consideration in the
Shutdown phase.

6.1 High Level Objectives of Sustaining Engineering

The principal objective of Sustaining Engineering is to maintain system usefulness by
protecting system integrity, fixing problems that are identified, and performing modifications to
keep up with changing environments. Documentation management, including updates and
configuration control, are part of this effort.

Several secondary activities support the primary objective. These include supporting user
activities, providing user help support, and user training.

On a regular basis, the system should be evaluated to ascertain remaining life expectancy of
the system. The evaluation should include some analysis of the cost of maintaining the
existing system versus the cost of replacement. If the need to replace or significantly upgrade
the system is anticipated, then it is desirable to include an estimate of lead time required and
potential cost. Keep a running list of prioritized documented potential upgrades to use as input
to any upgrade projects. Plan and lobby for replacement, if needed.

6.2 High Level Objectives of Shutdown

If the system is determined to have reached the end of its useful life-cycle, and if any neces-
sary replacements have been installed, then an orderly shutdown is called for. This could
include:

• Verify that all relevant elements have been migrated to the reuse library
• Archive software, documentation and hardware
• Release licenses
• Surplus hardware
• Assist users with migration to new system and procedures

Page 28

7.0 Key Support Processes for Rapid Development
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

7.0 Key Support Processes for Rapid Development

In many ways, the key support processes for Rapid Development are similar to those used in
traditional development paradigms. This section will therefore briefly introduce the concepts
and highlight some suggested modifications for Rapid Development.

7.1 The Need for and Application of Support Processes

Support processes are intended to control the development process in ways that improve
chances for success. That is, the support processes are put in place to ensure that the system
is developed correctly, on time, of adequate quality, and on budget, that the documentation is
complete and the code is safely stored and retrievable, and that management is informed and
aware of progress, problems and results of a project.

Support processes complement the life cycle, provide feedback to management on the
progress of development, and provide information which can be used to drive process
improvement.

As with the life cycle, the particular support processes used and their implementation should
be customized specifically to best support each particular project. Moreover, the
customization process should take into account the skills and experiences of the project team,
taking advantage of any history and expertise with specific products, techniques or processes.

In choosing and implementing support processes for a project, the following issues and
questions should be considered:

• How will the technical process be controlled?
• How will the use of resources (staff, budget, equipment) be budgeted, tracked, and

controlled?
• How will project planning be done, both initially and in response to actual progress and

status?
• What are the key risk areas for the project? How will they be identified, tracked and

controlled?
• What are the key data products of the project? How will the data products and software

products be managed and controlled?
• How will document content be managed and controlled?
• What tools and equipment will be used for this project? Include tools and equipment

used both for development and for support processes.
• How can the system development process be measured to identify quality, cost, and

schedule status and issues?

The answers to these questions will help determine what types of support processes are
required for the project and how they should be implemented.

7.2 Types of Support Processes

One way to characterize system development processes is as either technical, management
or institutional processes. In this view, the technical processes support completion of the tasks
needed to perform a project, management processes support the tasks needed to monitor

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 29

and control progress and resources for a project, and institutional processes support the tasks
needed to maintain the organization and environment in which a project takes place. The
following sections will explore each of these process types in more detail and discuss key
issues and questions to consider when setting up support process tools and procedures for a
project.

Figure 7. The Support Processes Pyramid

7.2.1 Technical Processes

Technical processes produce the product. These include all the steps in a project life cycle
(discussed in some detail in previous sections of this guidebook), along with test and V&V
(verification and validation) processes.

Management of the technical process includes monitoring technical issues with respect to the
project plan. Experience shows that the exact method for doing this is highly individual,
depending on the style of a particular project leader and that of the team members.

There are some key ideas to keep in mind when doing technical management in a Rapid
Development environment. To achieve maximum success, flexibility and responsiveness must
dominate project tracking. A strong project leader should as much as possible anticipate
problems and have alternatives identified. Team members should quickly inform the project
leader of any difficulties with potential schedule impacts. Frequent replanning will usually be
required. Technical management of Rapid Development projects is a high energy, highly
interactive process. To be most effective, the project leader and team members should have
considerable authority to revise, rework, and reassign tasks, priorities and resources as
needed to meet deadlines, budgets and requirements.

Team communication is a key element for success. All team members need access to the
latest plans, schedules, requirements, priorities and decisions. There are many ways to
achieve this, from a centrally located notebook that is updated frequently, to on-line web pages
accessible by the whole team. Frequent status tag-ups can be useful, but are not a substitute
for written material.

Technical

Management

Institutional

Page 30

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Frequent technical status meetings can be quite useful if they are short and focused. Strong
technical management should guide these meetings to assure that needed information is
exchanged but details not of interest to the entire team are worked independently. Avoid the
trap of over discussing issues by having a clear understanding of who has decision making
authority; it is not necessary to achieve consensus in every area. It will generally improve the
project to solicit team input for central issues or especially difficult design areas, but too much
discussion can impede progress.

Problems which may result in significant modification of the plan, whether in delivery content,
milestone dates, or resource usage, should be communicated to management in a timely
manner. Keep in mind that management abhors surprises, and can support the team better if
status and needs are clear and up to date.

7.2.1.1 Inspections

Code inspections are highly recommended. Inspections have proven to be a successful
mechanism for identifying and eliminating errors early.

Some of the important aspects of a successful inspection process include:
• Focus inspections on project improvement. Inspections are not personnel evaluations.

Managers should not be involved, and inspection results should never be used in any
way to measure individual performance.

• Each inspection meeting should be short and focused. Meet for no more than two
hours. Try to select small (in the range of 200 SLOC or 40 blocks) sections of code for
each inspection.

• Inspection teams should be small and focused. For each inspection, the team should
include a facilitator, presenter, recorder, developer and inspectors. Often, these
functions will overlap (for example, the developer may also present, an inspector may
also record). A typical effective inspection team size is four to six people.

• Inspections must focus on identifying problems and their severity. If team members
need to be briefed on the code to be inspected, hold a pre-inspection briefing meeting.
If the developer is uncertain how to fix a problem, address it outside the inspection
meeting. During the inspection, concentrate on creating a complete list of defects.

• Prepare for the inspections in advance. The facilitator must verify that the developer
has the code ready. Together, they must provide the rest of the inspection team with
code, documentation and any required supporting material, several days before the
inspection. Team members should review materials and prepare a defect list prior to
the inspection.

• Record inspection results. This includes listing all defects identified, the severity of
each defect, and any follow up actions required.

• Verify that the defect list and action list have been successfully addressed. Usually the
inspection facilitator is responsible for this, and works it directly with the developer,
including others as needed. Follow up meetings are not usually required.

Some special aspects of successful inspections in a Rapid Development environment include:
• When graphical development environments and autocoders are used, it is appropriate

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 31

to inspect the block diagrams rather than the generated source code. This has proven
effective for several reasons. Auto-generated code is usually difficult to read. If defects
are identified, any changes to the module should be made to the block diagrams
anyway. (This is in order to preserve the ability to maintain the code via the graphical
language. Anytime the auto-code is changed manually, it is no longer represented by
the block diagrams.) Since the block diagrams are often easier to read and understand
than source code, it is easier to include domain experts (who may not be coding
experts) in the inspections.

• Do not inspect every module for every release. The Rapid Development method
establishes low-fidelity end-to-end functionality early in development, and then evolves
modules over several releases. It is usually not effective to inspect very low fidelity
models or incomplete modules. A module should be inspected when it has reached a
maturity level that includes substantially all of its expected functionality, or earlier if the
developer of the module requests it. Also, it may be appropriate to reinspect modules
that undergo substantial revision for a later release.

• Do not delay inspections. It is tempting to wait until the system is completed before
performing inspections, but this is not optimal. By inspecting some modules early in
the development, coding standards, project expectations, and developer
understanding will be enhanced. Also, inspections are demanding and time
consuming. Team members can give them better attention, and produce better
inspection results, if they are spread out across development rather than concentrated
at the end.

7.2.1.2 Leveraging Project Information

Any project produces lots of paperwork. We try to capture information about requirements,
design, plans, schedules, progress and status. Use technology to enhance the value of this
information in a Rapid Development environment.

Some useful approaches include:
• Use electronic documentation. Try to find and use a relatively standard format (today,

this might mean PDF or HTML, but this could change rapidly). It is almost always faster
and cheaper to produce, maintain and deliver documents in electronic form.

• Make the documentation accessible to the project team. Use the network. FTP or web
sights are appropriate now; other technologies may emerge. This assures that all team
members have access to the latest versions of all documents. It means that the
documents still are available when different work stations are used. It eliminates
sources of potential error, confusion or inefficiency.

• Link the information. Requirements inspire design. Design relates to implementation.
All correlate to test plans and test results. With existing technology it is possible, and
not usually very difficult or costly, to electronically link the information, and even to
automatically process it to get status snapshots. A Rapid Development project will be
well served by careful and automated information correlation.

See section 7.2.2.6 for additional insights into documentation issues in a Rapid Development
environment.

Page 32

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

7.2.2 Management Processes

Management support processes are put in place to monitor and measure progress, while
providing resources and support to the technical project team.

Key management processes generally include Resource Management, Project Management,
Risk Management, Configuration Management, Test Management, Data & Documentation
Management, Problem Reporting and Resolution, and Information Resource Management.

7.2.2.1 Resource Management

Resource Management includes tools and procedures used to budget, track and control the
resources that are available to projects in an organization. Typically these resources include
staff, budget and equipment. The primary issues to be addressed by resource management
are:

• What resources does the project require? For each required resource,
- When in the project life cycle is the resource required?
- Must the resource be dedicated to the project or can it be shared?
- How does the commitment required of the resource vary as the project

progresses?
• What resources are available to the project to fill these requirements?

- Are all the required capabilities represented in sufficient quantity?
• How does resource availability correlate to resource requirements during the project

life cycle
- There may be a need to coordinate with other projects.
- This will affect project schedule.

Like most aspects of any project, and especially those using Rapid Development techniques,
the resource requirements profile is likely to vary from the plan somewhat as the project
progresses. It is important to track the variations and project their implications to ensure that
resource allocation plans are still feasible. It is usually counterproductive to insist on exact
balances in the resource allocation, since requirements are based on estimates which will
vary somewhat from actuals anyway. It is more useful and important to plan for approximate
balance, and then monitor and revise plans frequently as necessary.

Effective resource management in a Rapid Development environment can be challenging. A
Rapid Development approach to systems implementation may require more detailed resource
management than traditional models. This is because skill requirements may overlap among
more phases of the system life cycle than the more partitioned classical approaches.

7.2.2.2 Project Management

Project Management includes the tools and procedures used to plan, schedule, and monitor
project progress.

Project planning involves identifying the tasks that need to be done, and any
interdependencies. Estimate the resources (time, staff, equipment, budget) required to

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 33

perform the task. Determine significant milestones, deliverables, and any entry or exit
conditions for the tasks.

The project schedule assigns resources to each task and lays the tasks and milestones out
on a timeline.

Project management procedures and project progress will determine how often actual
progress will be compared to planned progress and how and when the plan and schedule will
be updated.

There are many things that cause actual progress to deviate from plans and schedules. A task
may prove to be harder or easier than expected. Resources may not be available as expected,
due to procurement difficulties or unexpected requirements from other projects. Internal or
external ICD (Interface Control Document) conditions may not be on schedule. New tasks may
be identified that are required but were not previously in the plan. The general expectation is
that the near term portion of schedules will be more accurate than the long term portions of
schedules.

In the Rapid Development environment using an evolutionary/spiral implementation model, an
overall project plan and preliminary schedule should be prepared as part of the
Conceptualization Phase. This high level plan will include an outline of the planned
evolutionary cycles and goals for each, including entry and exit conditions. At the same time,
detailed schedules for the first evolutionary cycle must be prepared. Since the detailed plans
for each succeeding cycle will depend somewhat on the lessons learned in the current cycle,
detailed scheduling will often be deferred for a cycle until near the end of the previous cycle.
Yet a best estimate look at plans and schedules for the entire project is highly beneficial, in
order to obtain and commit the necessary resources, to know when the system will be
available, and to know when the team and other resources can be used for other projects.

7.2.2.3 Risk Management

Risk Management processes are used to assess, control and minimize project risk. Risk areas
for a particular project could include cost, schedule, quality, safety, security and feasibility.

The nature of the Rapid Development life cycle introduces some special risk areas for a
development effort. This is primarily due to the evolutionary nature of system requirements
and project plans in this environment. Some of the special issues to be aware of include:

• Requirements Creep. As the life cycle progresses, more becomes known about the
problem and its solution. When using Rapid Development, requirements discovery is
a natural part of each development phase. As users and customers begin to see and
use the results, the project team will naturally think of additional capability and new
ways to use the system that are desirable but may be outside the original scope of the
project. Since each cycle and phase can legitimately result in modifications to the
requirements, there is a risk of constantly increasing the scope of the project. This, of
course, can result in missed deliveries and cost overruns. Yet refusing to respond to
changing requirements can negate some of the benefit derived from the Rapid
Development environment. To solve this dilemma, the team must stay focused on the
scope of the project. New or modified requirements requests should include an

Page 34

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

indicator of their criticality and estimated costs. When changes to the requirements are
likely to result in changes in the agreed costs or schedule, management and customer
agreement should be obtained. In formal environments, such as support contractors,
this agreement should be in writing and should include the relevant contracts
personnel. Sometimes desirable capability will not be implemented or will be deferred
to a later project. Try not to let this reduce the dynamics and enthusiasm of the team;
identifying and documenting ideas for future implementation is valuable, and delivering
a good system on time and in budget for the current effort increases the chances that
additional work will be funded later.

• Inconsistent expectations. The nature of the Rapid Development environment is that
things change quickly and agreements tend to come in meetings or brainstorming
sessions. But we all know that different people can come away from the same meeting
with quite different ideas about what was agreed upon. Take the time to summarize
and distribute updates with key points, and verify agreement among interested parties,
no matter how great the temptation to “just do it” may be. Rapid Development
techniques may skip some of the traditional upfront documentation and review steps,
but still requires that major requirements and design decisions be recorded and
approved as they evolve with the system.

Some aspects of the Rapid Development model tend to reduce project risk. Typically, plans for
the evolutionary cycles will identify the highest risk areas of the project and work those first.
After the solutions to the hardest problems have been determined, designed, and
implemented or prototyped, the lower risk, easier, better understood problem areas can be
addressed. It should be relatively straightforward to adapt the low risk system functions to the
(then) in place solutions to the high risk problems.

The Rapid Development life cycle also encourages risk containment by:
• limiting the work that must be done before system development begins
• involving users and customers in development decisions, to improve user acceptance

of systems
• frequent replanning improves flexibility to respond to changing requirements and

budgets
• interim cycle deliveries contrast with the “all or nothing” mentality of traditional

development and, in the face of budget uncertainty, ensure that completed work is
captured in usable form at predictable points in the project

7.2.2.4 Configuration Management

Configuration management systems and procedures (CM) define, implement and enforce the
ability to track project information.

The most common application is software tracking. The configuration management process
maintains the official software and tracks changes to it.

A complete configuration management system will usually include additional information.
Common elements include documentation, test cases and results, and system support
specifications (such as compiler requirements, library dependencies, and hardware and

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 35

operating system configuration needed to support the release).

There are some special considerations for configuration management in a Rapid
Development environment.

Usually there will be several official releases of the system (at cycle intervals). At least for the
duration of the development phases, configuration management should track and support
each release. This means freezing a snapshot at release time, and maintaining access to that
snapshot, and previous snapshots, while development of succeeding releases progress.

Each official release should be linked (preferably electronically) to documentation that also
corresponds to that release, such as requirements and design documents. Capturing the
detailed plan for the cycle is also recommended, since this will give information about the
goals and capabilities of that release.

Test data, test drivers and test results are important elements to capture, place under
configuration management, and link to managed code. Also, system configuration
requirements (hardware, operating system, compiler used, etc.) should be recorded for each
release.

Whether there is a need to maintain interim versions at the conclusion of the development
effort is project dependent, and the CM should include decision checkpoints for this.

The configuration management process must include mechanisms and controls for evolving
between cycles. A variety of COTS tools are available to support check-out, modification, and
check-in of files.

Historically, configuration management (CM) has been used as a gateway to make sure that
only approved software passes into the system. Typically, changes made to software under
CM had to be correlated to change requests (CRs) or discrepancy reports (DRs) and receive
management or board level approval before being accepted.

This sort of system may be too rigorous for early Rapid Development evolutionary releases.
Thus, teams may be inclined to delay putting the software under configuration management
until it is nearly completed and has begun to stabilize, so as to avoid interfering with the
momentum of Rapid Development in the early cycles.

But that approach does not adequately protect the project. In Rapid Development, changes
may occur frequently and various developers need to coordinate to make sure that everybody
is using and testing with the current version. It is also necessary to verify that changes made
by more than one developer do no conflict or cancel each other.

The recommended configuration management approach for Rapid Development is one that is
more open to the developers, somewhat less rigorous in terms of control, but quite powerful
in terms of tracking changes, integrating work of multiple developers, and coordinating
multiple releases. A variety of COTS tools exist that can support such an environment.

For early development cycles, it should be relatively easy for implementors to check out,
modify, and check in software, using the CM system. This places relatively little demand on
developer productivity, while providing excellent protection of the evolving software. As the
software matures, and passes through more testing and approval gateways, control over

Page 36

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

software modifications should be increased.

Configuration management in the early stages of Rapid Development can be used effectively
to the benefit of projects. It is important to strike a balance between control and protection of
project assets, while maintaining enough flexibility to support a highly dynamic work
environment. This type of intermediate and flexible control can be achieved with currently
available support software.

7.2.2.5 Test Management

The Test Management process defines required testing procedures, the process for ensuring
and documenting that all required tests have been performed successfully, and the conditions
that require repeating some or all of any test series.

When working in a Rapid Development environment, several deliveries (cycle drops) are
usually planned for a project. Complete, independent verification and validation (IV&V) is often
done only in the finalization phase. Unit testing, subsystem testing and integration testing is
needed for each evolutionary cycle. At the completion of each development cycle, sufficient
testing should have been completed so that the team is confident that the release works
correctly or has documented known problems and included problem disposition in the project
and cycle plans.

Specific test requirements should be included in the detail plan for each cycle. It may be
necessary to repeat some tests from previous cycles to be sure that the current cycle’s
updates have not inadvertently caused problems in previously completed work. Other test
runs from previous cycles may no longer be appropriate or may require modification to reflect
the current state of the system.

As much as possible, the test process should be automated, to save time and to simplify
repetitive and repeatable testing. Coordinate with Configuration Management to archive test
cases, drivers, results, and interpretation. Link with electronic documentation to maintain the
relationship among requirements, tests and results.

After development has completed and the system has been delivered, it may not be necessary
to maintain interim cycle test information. This issue is highly project dependent. Consider
whether any of the intermediate cycle deliveries might serve as starting points for related or
future projects. If so, the entire test suite may be valuable. Will any modules migrate to the
software reuse library? In this case, certainly unit test data and drivers will be useful.

7.2.2.6 Data & Document Management

Data and Document Management processes define data and document requirements for a
project, as well as responsibility for their creation, procedures for approval and distribution,
procedures for archiving, maintaining and updating project data and documentation.

A Rapid Development environment creates some non-traditional issues in this area, especially
documentation. Specific documents to be written, and their timing with respect to the project
life cycle are often markedly different from more traditional models. Subsystem design
documentation usually follows or parallels implementation. Requirements documentation

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 37

tends to be more functional than detailed and may evolve with the system. The implementation
generally serves as the detailed design, especially if graphic development tools (with auto-
coders) are used. Updated documents may be released with each implementation cycle.

Released documentation should be held under configuration management. Until project
development is completed (and, presumably, documents are in their final form), it is probably
best to limit distribution of the documents. Accessible electronic copies of documents are
recommended, since they allow access as needed to the most current versions. Excessive
distribution of interim documents runs the risk of confusing or overwhelming recipients who
receive copies of several versions. Interim versions should be clearly marked as such, to
minimize confusion.

If some form of electronic approval capability (equivalent to signatures on a hard copy) could
be implemented, it would be possible to also maintain the “official” copies electronically.

Whether or not to maintain availability of interim versions should be decided on a per project
basis.

7.2.2.7 Problem Reporting and Resolution

Problem Reporting and Resolution processes define and carry out the formal mechanism for
logging observed problems, facilitating their resolution and tracking their status.

Problem Reporting and Resolution processes are used during testing and during the
sustaining engineering phases of a system life cycle. Traditionally, reported problems have
been categorized as

• discrepancy reports(dr): documents an aspect of the system which does not match
stated requirements

• change requests (cr): documents a need to modify one or more stated requirements
and the system

• trouble reports(tr): documents a general problem in operating the system

In the Rapid Development environment, during system development phases, requirements
are expected to evolve with the system, so that one end product of each evolutionary phase
is updates to the system requirements. These may be additional requirements, or clarification
of general requirements previously outlined in the requirements documentation. As these
requirements are identified, they need to be logged and tracked as well. These may be
included in the problem reporting system as a fourth category, requirements change.

• requirements change (rc): documents a newly discovered requirement or a
clarification of a general requirement

Note the difference between a cr, which documents a change to existing requirements, and rc,
which documents a newly discovered requirement.

Disposition of requirements change reports must be carefully managed to avoid the problems
of requirements creep (see section 7.2.2.3, Risk Management). Problem reports should be
linked to requirements and test results (both the results which identified the problem and the
results which support problem resolution). Problem summary reports, which summarize
status and disposition, should be automated as much as possible, and available to team

Page 38

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

members.

7.2.2.8 IRM (Information Resource Management)

Information Resource Management deals with issues pertaining to tools, systems and
equipment that will be used for a project. These could, for example, be data base tools,
compilers, CASE tools, development environment, computers, networks, operating systems,
and office support tools such as word processors and spreadsheets programs. An information
resource management plan works to ensure that the necessary resources are available to
support the project. For small projects, the plan is often unwritten and relatively informal. More
complex projects may require more formality in managing these resources. In any case, it is
important to investigate and plan for the availability and stability of the information resources
that are required by the project.

Project plans and schedules can be effected by the information resource management plan in
a variety of ways. If there are a limited number of licenses or workstations, there may be
competition among team members or between teams for those resources. If a piece of
software or hardware undergoes an upgrade there may be conversion requirements or down
time interruptions of the schedule. There may be a need for technical support, both internal
(from your organization) and external (usually the product’s vendor), and the project budget
must account for this. New or upgraded tools may necessitate training time and costs, or may
have a “learning curve” effect, temporarily reducing productivity. System Administrators may
be willing to accelerate or delay installations or upgrades to facilitate a project, or there may
be conflicting requirements among projects that need to be negotiated.

Of special interest in the Rapid Development is the effect of the evolution of the information
resource environment and its effect on intermediate deliveries. For example, if a compiler is
upgraded, will there be a need to test interim releases of the system, or only the version
currently evolving? Or, what happens to electronic project records (documentation, meeting
notes, etc.) if the document preparation package changes? The answers to such questions
are, of course, project dependent. It is important to be certain that they are considered.

Powerful tools are likely to be in high demand by the implementation team. Plan ahead to
assure sufficient availability of product licenses to support the project needs.

7.2.3 Institutional Processes

Institutional processes are not project dependent, but rather project supportive. That is, these
are processes which are put in place to generally improve the ability of an organization to
develop good, cost effective systems in a timely manner. Some important examples of
institutional processes include Labor Accounting, Process Improvement, Staff Training, Tool
Evaluation & Selection, and Metrics Data Collection, Evaluation and Reporting.

7.2.3.1 Labor Accounting

A labor accounting process provides the ability to measure and track labor costs. Labor
accounting may be done at varying granularity (minutes, hours, days), and detail levels
(project, phase, task, department) depending on the needs of management.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 7.2 Types of Support Processes

Page 39

Some examples of the uses for labor accounting data include:
• to monitor progress by showing what is being worked on
• to compare estimated to actual effort required to complete a task
• as historical data to improve future estimation capability
• to determine project costs, for internal accounting or customer billing
• to determine productivity trends and other project management metrics

7.2.3.2 Process Improvement

How does an organization know if its processes and procedures are effective and efficient?
Process Improvement processes examine current ways of doing business, identify areas of
weakness or potential improvement, then propose, implement and evaluate new methods as
appropriate.

ISO-9000 and the SEI (Software Engineering Institute) CMM (Capability Maturity Model) are
two approaches to process improvement that are widely accepted.

The Rapid Development guidelines in this document are a major effort at overall process
improvement. A correlation between the Rapid Development methodology and SEI’s CMM is
available in JSC-38607.

7.2.3.3 Training

In addition to project specific training, there is a general organizational need to keep staff up
to date on current tools, processes, technology, etc.

When an organization starts using the Rapid Development model, project staff may not be
familiar with Rapid Development the techniques and tools. Start up training will be necessary.

7.2.3.4 Tool & Equipment Evaluation & Selection

What is the best way to equip a work area? Tool and Equipment Evaluation and Selection is
an ongoing, continuous process, because the state of the art advances, new products are
offered, current products are upgraded, equipment wears out. Planning and budgeting for this
activity will help ensure its success. If possible, survey staff for product or capability wish lists,
and then keep a lookout for them in the marketplace. Document product evaluations for use
by others and comparison with other products. If possible, share evaluations with other
organizations, to get alternative views and to increase the possible scope of the evaluations.

Tools which support Rapid Development proliferate. To keep on the cutting edge, active
attention to their evaluation is recommended.

As selection and procurement are planned and carried out, coordinate with training efforts.
Consider effects on project plans, schedules and budgets (see section 7.2.2.8, Information
Resource Management)

7.2.3.5 Metrics Data Collection, Evaluation and Reporting

Metrics related processes pertain to the collection, evaluation and reporting of project data.

Page 40

7.2 Types of Support Processes
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Metrics can be used to support project development, maintenance and management
functions, as well as process improvement functions. It is an Institutional process because of
the advantage to an organization of using consistent tools and procedures for metrics across
projects. A consistent approach allows for project to project comparisons and improves the
data collection results, as staff become familiar with what is expected and adopt it as part of
the normal work environment.

Expect an effective metrics program to take two to four years to mature. Look for balance in
the amount of data collected versus the effort needed to collect it. Automate the collection and
reporting process as much as possible.

Evaluation of metrics can sometimes lead to unexpected results. Be open to new possibilities.
Expect some initial staff resistance to the concept; acceptance will likely follow once the value
of the program is demonstrated.

When choosing what data to collect and how to evaluate it, focus on the goal of metrics. The
easiest data to collect is not always the most useful. Productivity can be difficult to quantify,
especially in high tech environments where one-of-a-kind systems are developed with
advanced tools, such as auto-coders. Try not to overlook, for example, the advantage that
would be obtained by improving estimating techniques or reducing error rates in delivered
systems.

Effective metrics processes for a Rapid Development environment are still being researched.
The next section of this document looks at additional issues regarding the use of metrics in a
Rapid Development environment.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 8.0 Using Metrics for Success in Rapid Development

Page 41

8.0 Using Metrics for Success in Rapid Development

Metrics are collected in order to measure, track, manage and plan projects. The successful
use of metrics depends on knowing what to measure, taking accurate measurements, and
interpreting those measurements. Much of this is predicated on having historical data for
comparison. For Rapid Development, there is very little available historical data, including the
large commercially available project metrics data bases. We, along with others in the software
systems field, are developing appropriate methods as we go, while trying to take what we can
from metrics programs that have been developed for traditional methodologies.

8.1 Metrics Goals

Metrics can be useful only insofar as they support project goals. In order to determine what to
measure, it is necessary to consider the goals of the metrics program. Some of the things that
a manager or team member might want to know about a project, and might use metrics to help
discover, include:

• predictive estimates of, for example
- staffing
- time
- cost
- system size
- system performance
- benefits
- risks

• project output
• project outcome
• status
• progress
• quality

A particular project may need a metrics programs to determine some, all or none of these, or
other project evaluations.

8.2 Measuring Values for Metrics

Every project will have individual needs. For traditional software development efforts, there is
significant historical data available to provide baselines of what to measure and how to use
those measurements. These ideas are less well researched for Rapid Development.

On some level, it may be appropriate to measure whatever is available. In the Rapid
Development Laboratory, we are attempting to build our own data base of historical
measurements so that, over the long run, we can gain better understanding of the appropriate
use of metrics for Rapid Development projects.

But each measurement taken has some impact on the projects, at least in time to collect, store
and study the measures. So some initial analysis is required to focus the measurement effort.

Page 42

8.2 Measuring Values for Metrics
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Several strategies have been investigated.

One effective metrics program in use at NASA, in a traditional development environment, was
adopted by the JSC/Mission Operations Directorate (MOD) during the period from May 1990
to March 1992. This metrics program has been and is being used successfully as a
management tool on The Mission Control Center upgrade task at JSC and the development
of the Integrated Planning System for Space Station planning and analysis. Both these
projects are large efforts requiring incremental development to manage risk and respond to
fluctuating budget uncertainties. Details pertaining to this program are included for reference
in Appendix D. This program was studied extensively by RDL staff before beginning our own
metrics program.

In a cooperative technology exchange program, our initial metrics efforts were shared with and
studied by the Goddard Spaceflight Center (GSFC) Software Engineering Laboratory (SEL),
in cooperation with the University of Maryland. In this effort, our initial metrics program was
analyzed in the context of a GQM (Goal/Question/Metrics) program being studied at the SEL.
This effort is still underway.

Table 1 shows the metrics currently being collected in the RDL. Table 2 shows the preliminary
SEL suggestions for data collection using the GQM approach in our environment. Neither list
should be taken as definitive. This is an area that requires additional research, and these are
preliminary efforts. In particular, the SEL/Univ of MD study is still underway. They are
presented here in the hope that they may prove to be useful starting points for a RD metrics
program.

Table 1. Initial Metrics Collected

Metric Classification Description

Software Size The SLOC in the system that must be tested and
maintained

Software Size MatrixX Block Counts

Software Size Size of executables

Software Staffing Number of engineering and first line management
personnel involved in system development

Development Progress Number of modules successfully completed from design
through test

Software Performance Execution times

Test Case Completion Percent of test cases successfully completed

Discrepancy Report Open
Duration

Time lag from problem report initiation to problem report
closure

Fault Density Open and total defect density over time

Design
Complexity

Number of modules with a complexity greater than an
established threshold

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 8.3 Metrics Insights for Rapid Development

Page 43

For some of the measurements in both tables, we do not yet have sufficient historical data
base or insight to know how or if they will prove useful for planning or managing a Rapid
Development project, or for evaluating its quality. An example is MatrixX block counts. By
collecting this data, we hope to learn more about effective metrics in a Rapid Development
environment.

8.3 Metrics Insights for Rapid Development

This is a preliminary effort. There is not yet sufficient data or experience to draw significant
conclusions about the best way to use metrics in Rapid Development. We are still looking
primarily at output metrics, which monitor and record project progress, as is appropriate for an
early effort. As we learn more, we hope to be able to concentrate more on outcome metrics,
which can be used to position a project for success more pro-actively.

Our experiences to date have yielded some important insights. These include:
• Specific development resource utilization metrics are not only difficult to collect but

probably irrelevant in our development mode. CPU time, for example, is not a typically
scarce or limiting resource. And those resources that are limiting are usually obvious:
insufficient licenses for some development tools or test platform availability are
common resource bottlenecks. When we get more sophisticated at this, it may be

Table 2. GQM Metrics to Support RD (preliminary)

Actual expended effort by time period and subsystem

Expected effort by time period and subsystem

Total effort

Effort by cycle

Effort by WBS (Work Breakdown Structure) task

Number of defects discovered, by date

Number of defects expected, by date

Number of defects fixed, by date

Number of defects discovered, by subsystem

Number of defects discovered, by test activity

DR (discrepancy report) open duration

Number of severe defects discovered

Total calendar time

Calendar time by cycle and task

Number of cycle and WBS tasks completed to date

Number of cycles and WBS tasks scheduled to be completed

Size of system in blocks, units, principle functions and/or requirements

Page 44

8.4 Some Special Aspects of Rapid Development Metrics
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

useful to revisit this type of metric, to help determine, for example, how many additional
licenses are optimal.

• A more relevant and critical resource measurement appears to be the performance of
the developed software. In the RDL, this is due to the real-time demands of GN&C
systems.

• Code size measurements, whether as SLOC or MatrixX blocks, are not predictive of
project progress for Rapid Development, since the code tends to expand rapidly in
early iterations and then stabilize during cycles which refine functionality. Code size
may still be a good predictor of cost or schedules, so we choose to continue to
measure it to populate our historical data base.

• Function Point measurements should be further investigated, but require significant
training and understanding for successful use.

• Automated, semi-automated, or on-line tools can be developed to both improve the
accuracy and currency of data and minimize the impact, on team members, of
capturing the data. When such tools are used, they need to be captured under
configuration management, to assure consistent measurements throughout the
project life-cycle.

8.4 Some Special Aspects of Rapid Development Metrics

When designing and implementing a metrics program for Rapid Development, consider the
following:

• Risk management and amelioration underlie much of the Rapid Development
approach. How do we specifically address metrics comparisons which may be
significantly impacted by a Rapid Development methods?

• The structure of Rapid Development methods introduces multiple cycles in the design
to test phases. The classic metrics should be amended to reflect the impact of a spiral
development model.

• Project management metrics for conventional development applications are centered
around concepts designed for conventional development. How do we define a Rapid
Development analogue which may be predicated on a different fundamental metric
set?

• The metrics need to be extended to include hardware-in-the-loop aspects of the life
cycle development. For GN&C systems, the issue of hardware-in-the-loop integration
and testing generally has significant impact on the project. Some of these impacts
include:

- Hardware purchase - direct cost of purchasing the hardware elements
- Hardware acquisition - process costs, not actual hardware costs
- Familiarization - personnel learning new hardware and adapting it to the RDL

√ Training
√ Installation
√ Checkout
√ Acceptance

- Integration - making the hardware work in the software/hardware construct

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 8.4 Some Special Aspects of Rapid Development Metrics

Page 45

√ Hardware development (emulators, prototypes, device drivers, etc.
• The use of auto-code generators may impact some traditional measurements.

Page 46

Appendix A: References
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

 Appendix A: References

A.1 Text Books

W.W. Agresti, New Paradigms for Software Development, IEEE Computer Society Press,
1986.

S.J. Andriole, Rapid Application Prototyping: The Storyboard Approach to User Requirements
Analysis, QED Technical Publishing Group, 1991.

W. Bischofberger & G. Pomberger, Prototyping Oriented Software Development: Concepts
and Tools, Springer-Verlag, 1992.

B.H. Boar, Application Prototyping: A Requirements Strategy for the 80’s, John Wiley & Sons,
1984.

J.L. Connell & L. Shafer, Structured Rapid Prototyping: An Evolutionary Approach to Software
Development, Yourdon Press Computing Series, 1989.

C. Gane, Rapid System Development: Using Structured Techniques and Relational
Technology, Prentice Hall, 1989.

S. Hekmatpour & D. Ince, Software Prototyping, Formal Methods and VDM, Addison-Wesley,
1988.

K.E. Lantz, The Prototyping Methodology, Prentice-Hall, 1985.

M. Mullin, Rapid Prototyping for Object-Oriented Systems, Addison-Wesley, 1990.

M.F. Smith, Software Prototyping: Adoption, Practice and Management, McGraw-Hill Book
Co. (UK), 1991.

A.2 World Wide Web Sites

http://www.lehigh.edu/kaz2/public/www-data/rp/rp.html RAPID PROTOTYPING

http://www.questicn.com/questicn/radnotes.htm Rapid Prototyping and Evolution

http://www.cranfield.ac.uk/aero/rapid/rapid_prot.html Rapid Prototyping

http://cadserv.cadlab.vt.edu/bohn/RP.html The Rapid Prototyping Resource Center

http://www.iao.fhg.de/Library/rp/OVERVIEW-en.html Virtual Library on Rapid Product

Development

http://www.lookup.com/homepages/56694/scsq/scsq1.htm Southern California Software

Quality

http://stsc.hill.af.mil/www/ Software Technology Support Center Home Page

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix A: References

Page 47

A.3 Articles & Papers

J.A. Airst & E.J. Norgren, “Rapid Prototyping Using the VMEbus in an Open Systems
Architecture Real-Time Environment”, Proceedings The Fourth International Workshop on
Rapid System Prototyping: Shortening the Path from Specification to Prototype, June 28-30,
1993, Research Triangle Park, NC, pp. 89-99.

S. Alexander, J. Koehler, J. Stolzy, & M. Andre, “A Mission Management System Architecture
for Cooperating Air Vehicles”; Proceedings of the IEEE 1994 National Aerospace and
Electronics Conference (NAECON), May 23-27, 1994, Dayton, OH; pp. 156-163.

J.M. Ball & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyping & Integrated
Design Application Studies, Final Report”; NAS9-18877, February 1995.

J.M. Ball, D.C. Weed & E.J. Riel, “Strategic Avionics Technology Program: Rapid Prototyping
& Integrated Design Application Studies, White Paper, Rapid Development Process”; NAS9-
18877, February 1995.

H.J. Bender, “Alternative Life Cycle Models for Spacecraft Mission Operations Software
Development”; Proceedings of the ESA Symposium: Ground Data Systems for Spacecraft
Control, June 26-29, 1990, Darmstadt, Germany; pp. 443-448.

E.H. Bersoff & A.M. Davis, “Impacts of Life Cycle Models on Software Configuration
Management”; Communications of the ACM, August 1991, vol. 34 no. 8, pp. 104-118.

B.W. Boehm, “A Spiral Model of Software Development and Enhancement”, Tutorial: Software
Engineering Project Management (R.H. Thayer, ed.), Computer Society Press of the IEEE,
1988, pp. 128-142.

B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

P. Branton, “More Haste, Less Speed”; Computer Weekly, September 7, 1995, p. 37.

A.S. Brown, “Rapid Prototyping-Parts Without Tools”; Aerospace America, vol. 29, August
1991, pp. 18-23.

C. Burns, “REE-A Requirements Engineering Environment for Analyzing and Validating
Software and System Requirements”; Proceedings of the Fourth International Workshop on
Rapid System Prototyping: Shortening the Path from Specification to Prototype, June 28-30,
1993, Research Triangle Park, NC; pp. 188-193.

C. Comaford, “Don’t Let Haste Plague Your RAD”; PC Week, January 15, 1996, vol. 13 no. 2,
p. 18.

J. Connell & G. Wenneson, Software Engineering Guidebook, NASA-CR-177625.

L. Constantine, “Under Pressure”; Software Development, October 1995, vol. 3 no. 10, p. 112.

L. Constantine, “Re: Architecture”; Software Development, January 1996, vol. 4 no. 1, p. 88.

A.M. Davis, “Operational Prototyping: A New Development Approach”; IEEE Software, vol. 9
no. 5, September 1992; pp. 70-78.

E.L. Duke, R.W. Brumbaugh & J.D. Disbrow, “A Rapid Prototyping Facility for Flight Research

Page 48

Appendix A: References
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

in Advanced Systems Concepts”, Computer, vol. 22 no. 5, May 1989, pp. 61-66.

A. Dunne, “Rapid Application Development”; Software Development, March 1995, vol. 3 no.
3, p. 55.

J.J. Ensell, “Rapid Prototyping for ASIC Designs”, Electronic Engineering Times, June 19,
1995, no. 853, p. 82.

G.E. Fisher, “Rapid System Prototyping in an Open System Environment”; Proceedings of the
Fifth International Workshop on Rapid System Prototyping: Shortening the Path from
Specification to Prototype, June 21-23, 1994, Grenoble, France, pp. 213-219.

B.R. Givens, “Object-Oriented Applications in a Rapid Prototyping Environment”; Proceedings
of the IEEE 1994 National Aerospace and Electronics Conference (NAECON), May 23-27,
1994, Dayton, OH; pp. 814-819 vol. 2.

B.R. Givens & T.R. Hoerig, “A Scalable Architecture for the Rapid Prototyping of Aircraft
Cockpits”, Proceedings of the IEEE 1993 National Aerospace and Electronics Conference,
NAECON 1993, May 24-28, 1993, Dayton, OH; vol. 1 pp. 523-528.

I. Glickstein & P. Stiles, “Application of AI Technology to Time-Critical Functions”; AIAA/IEEE
Digital Avionics Systems Conference, October 17-20, 1988, San Jose, CA

E.M. Halbfinger & B.D. Smith, “The Range Scheduling Aid”; Proceedings of the NASA JSC
Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90),
Houston, TX; pp. 280-284.

M. Hanna, “Farewell to Waterfalls”; Software Magazine, May 1995, vol. 15, no. 5, p. 38.

J. Harper, “RAD Roundup: A Down and Dirty Tour of the Fast-Paced World of Rapid
Application Development”; HP Professional, May 1995, vol. 9 no. 5, p. 30.

H.-J. Herpel, M. Held, & M. Glesner; “MCEMS Toolbox: A Hardware-in-the-Loop Simulations
Environment for Mechatronic Systems”; MASCOTS ‘94, Proceedings of the Second
International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, January 31- February 2, 1994, Durham, NC; pp. 356-357.

H.-J. Herpel, N. Wehn, & M. Glesner, “RAMSES-A Rapid Prototyping Environment for
Embedded Control Applications”, Proceedings of the Second International Workshop on
Rapid System Prototyping: Shortening the Path from Specification to Prototype, June 11-13,
1991, Research Triangle Park, NC; pp. 27-33.

K. Jones & T. Shepard, “Focusing Software Requirements Through Rapid Prototyping”;
Proceedings of the 1994 Canadian Conference on Electrical and Computer Engineering,
September 25-28, 1994, Halifax, NS, Canada; pp. 629-632 vol. 2.

R.E. Jones, “The Advanced Avionics System Development Laboratory”; Proceedings of the
IEEE/AIAA 10th Digital Avionics Systems Conference, October 14-17, 1991, Los Angeles,
CA; pp. 242-247.

A.F.U. Khan, “Mapping the Expert Systems Development Process to the Department of
Defense Life-Cycle Model”; Proceedings, IEEE Conference on Managing Expert System

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix A: References

Page 49

Programs and Projects, September 10-12, 1990, Bethesda, MD; pp. 31-40.

J. King, “Consult Users Early, Often: Price Waterhouse System Goes Up in Just Four Months”;
Computerworld, October 16, 1995, vol. 29 no. 42, p. 77.

E.M. Lancaster & D.A. Petri, “Program Life Cycle and the System Engineering Process”; JSC-
49037, November 1993.

R.-J. Lea, S. Chen, & C.-G. Chung, “On Generating Test Data From Prototypes”; Proceedings
of the Fifteenth Annual International Computer Software and Applications Conference,
September 11-13, 1991, Tokyo, Japan; pp. 345-350.

B.M. Leiner & J.R. Weiss, “Telescience Testbedding: An Implementation Approach”; Research
Institute for Advanced Computer Science, NASA Ames Research Center, NASA-CR-185429,
1988.

D.S. Linthicum, “The End of Programming”; Byte, August 1995, vol. 20 no. 8, p. 69.

D.S. Linthicum, “RAD: Fast Food for Application Hunger”; Open Computing, December 1995,
vol. 12 no. 12, p. 48.

M. Lubars, C. Potts, & C. Richter, “A Review of the State of the Practice in Requirements
Modeling”, Proceedings of IEEE International Symposium on Requirements Engineering,
Jan. 4-6, 1993, San Diego, CA; pp. 2-14.

M.D. Lubars, “Reusing Designs for Rapid Application Development”; ICC 91 International
Conference on Communications Conference Record, June 23-26, 1991, Denver, CO; vol. 3
pp. 1515-1519.

L. Luqi & R. Steigerwald, “Rapid Software Prototyping”; Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences, January 7-10, 1992, Hauai, HI; vol. 2
pp. 470-479.

Luqi, “Research Aspects of Rapid Prototyping”; U.S. Naval Postgraduate School, report
number NPS52-87-006, 1987.

D. Lyons, “Choosing the Right Tool”; InfoWorld, May 1, 1995, vol. 17 no. 18, p. 49.

R.P. Meyer, R.J. Landy & D.J. Halski, “ICAAS Piloted Simulation Evaluation”

M.J. Miedlar & W. Koenig, “Automatic Code Generation for Aerodynamic/Math Models”;
Proceedings of the IEEE 1994 National Aerospace and Electronics Conference (NAECON),
May 23-27, 1994, Dayton, OH; vol. 2 pp. 839-844.

D. Millington & J. Stapleton, “Developing a RAD Standard”, IEEE Software, vol. 12 no. 5,
September 1995; pp. 54-55.

H. Mirab & F. Tubb, “First Flight Vehicle Controlled by Computer Generated Software”;
Dynamics and Control of Structures in Space: Proceedings of the 2nd International
Conference, September 6-10, 1993, Cranfield, UK; pp. 653-664.

H. Mirb, “Rapid Prototyping for Real-Time Systems Design”; Proceedings of the IEE
Colloquium on High Accuracy Platform Control in Space, June 14, 1993, London, UK; pp. 13/

Page 50

Appendix A: References
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

1-5.

C.R. Moffitt, II & Luqi, “A Language Translator for a Computer Aided Rapid Prototyping
System”; U.S. Naval Postgraduate School, report number NPS52-88-021, 1988.

J. Mullin, “Rapid Iterative Systems Engineering (RISE)”; Proceedings of the IEEE Colloquium
on Aspects of Systems Integration, November 12, 1993, London, UK; pp. 4/1-4.

N.C. Olsen, “Designing a Real-Time Platform for Rapid Development”; Proceedings of the
IEEE Workshop on Real-Time Applications, July 21-22, 1994, Washington, DC; pp. 70-75.

R. Olson, “System Architecture for Process Integration”; ICSI ‘92 Proceedings of the Second
International Conference on Systems Integration, June 15-18, 1992, Morristown, NJ; pp. 240-
246.

D.F. Oresky & C.W. Haapala, “Verification and Validation in an Iterative Software Development
Environment”; Proceedings of the Fourth International Workshop on Rapid System
Prototyping: Shortening the Path from Specification to Prototype, June 28-30, 1993, Research
Triangle Park, NC; pp. 57-67.

M.B. Ozcan & J. Siddiqi, “A Rapid Prototyping Environment Based on Executable
Specifications”; Proceedings of 1994 IEEE Region 10’s Ninth Annual International
Conference Theme: Frontiers of Computer Technology, August 22-26, 1994, Singapore; vol.
2 pp. 790-795.

M.B. Ozcan & J.I.A. Siddiqi, “Validating and Evolving Software Requirements in a Systematic
Framework”, Proceedings of the First International Conference on Requirements Engineering,
April 18-22, 1994, Colorado Springs, CO; pp. 202-205.

C. Palmer, D. Burwen, E. Finnie, “RASSP Cuts Development Time and Cost”; Electronic
Engineering Times, July 17, 1995, no. 857, p. 48.

B.K. Patel, V. Litchfield, D. Tamanaha, & A. Davis, “Real Time Systems/Software
Methodologies for Large Aerospace Systems”, 1991 IEEE Aerospace Applications
Conference Digest, Februrary 3-8, 1991, Crested Butte, CO; pp. 2/1-9.

M.C. Paulk, C.V. Weber, S.M. Garcia, M. Chrissis, & M. Bush, Key Practices of the Capability
Maturity Model, Version 1.1, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania; February 1993.

D. Pesek, “Rapid Development Lab Configuration Management Plan”; internal document,
October 1995.

A. Radding, “Managing RAD Programmers: Conventional Management Techniques Often
Don’t Work”; InfoWorld, October 23, 1995, vol. 17 no. 43, p. 74.

S. Rahmani, A.G. Stone, W.S. Luk, & S.M. Sweet, “Rapid Prototyping via Automatic Software
Code Generation from Formal Specifications: A Case Study”; 1992 IEEE Aerospace
Applications Conference Digest, February 2-7, 1992, Snowmass, CO; pp. 95-105.

S. Rahmani, “A Software-First Methodology for Definition and Evaluation of Advanced
Avionics Architectures”, Proceedings IEEE/AIAA/NASA 9th Digital Avionics Systems

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix A: References

Page 51

Conference, October 15-18, 1990, Virginia Beach, VA, pp. 283-288.

Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Progress Report, April-May 1993”; McDonnell Douglas TM-6.23.07-24; June 30, 1993.

Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Lessons Learned Report”; McDonnell Douglas TM-0009-01 enclosure 1; January 28, 1994.

Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Assurance and Test Report”; McDonnell Douglas TM-0009-01 enclosure 2; January 28, 1994

Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development
Configuration Management Plan”; McDonnell Douglas TM-0009-01 enclosure 3; January 28,
1994

Rapid Prototyping Simulation Development Team, “Soyuz ACRV Simulation Development Trip
Report, Summary of Trip to MDA-Huntington Beach”; McDonnell Douglas TM-0009-01
enclosure 4; January 28, 1994

J.P. Reilly & E. Carmel, “Does RAD Live Up To the Hype?”; IEEE Software, vol. 12 no. 5,
September 1995; pp. 24-26.

K. Rizman, I. Rozman, & D. Verber, “The CASE Tool RPT Supporting the Rapid Prototyping
Approach to Software Development”, 6th Mediterranean Electrotechnical Conference
Proceedings, May 22-24, 1991, LJubljana, Slovenia, vol. 2 pp. 1033-1036.

K. Rizman, I. Rozman, & D. Verber, “RPT: A CASE Environment Supporting the Rapid
Prototyping Approach to Software Development”; Proceedings of the Advanced Computer
Technology, Reliable Systems and Applications 5th Annual European Computer Conference
(CompEuro) ‘91, May 13-16, 1991, Bologna, Italy; pp. 208-212.

R.B. Rowen, “Software Project Management Under Incomplete and Ambiguous
Specifications”; IEEE Transactions on Engineering Management, vol. 37 no. 1, February
1990; pp. 10-21.

W.W. Royce, “Managing the Development of Large Software Systems”; Proceedings of IEEE
WESCON, 1990, pp. 1-9.

M. Schrage, “Facilitation: Powerful Job with a Wimpy Name”; Computerworld, February 12,
1996, vol. 30 no. 7, p. 35.

B.J. Schroer, F.T. Tseng, S.X. Zhang, W.S. Dwan, Automatic Programming of Simulation
Models, Task 3 Final Report; NASA-CR-184221, 1990.

J.H. Shackelford, J.D. Saugen, M.J. Wurst, & J. Adler, “The Development of an Autonomous
Rendezvous and Docking Simulation Using Rapid Integration and Prototyping Technology”
(abstract only); NASA Automated Rendezvous and Capture Review, 1993.

J.M. Smith, “In This Game, the Hottest Tools are Totally RAD”; Government Computer News,
March 20, 1995, vol. 14 no. 6, p. 76.

C. Smyrniotis, “Rapid Prototyping: A Cure for Software Crisis”; Proceedings of the Twenty-
Third Annual Hawaii International Conference on System Sciences, January 2-5, 1990,

Page 52

Appendix A: References
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Kailua-Kona, HI; pp. 202-210, vol. 2.

W.H. Spuck, “The Rapid Development Method”, Jet Propulsion Laboratory, California Institute
of Technology; July 1992.

M.B. Srivastava, T.I. Blumenau, & R.W. Brodersen, “Design and Implementation of a Robot
Control System Using a Unified Hardware-Software Rapid-Prototyping Framework”;
Proceedings of the IEEE 1992 International Conference on Computer Design: VLSI in
Computers and Processors (ICCD ‘92), October 11-14, 1992, Cambridge, MA; pp. 124-127.

A. Stone, C. Scott, & S. Rahmani, “On Definition and Use of Systems Engineering Processes,
Methods and Tools”, 1993 IEEE Aerospace Applications Conference Digest, Jan. 31-Feb. 5,
1993, Steamboat, CO, pp. 197-205.

D.Y. Tamanaha, “Structured Process Flows (SPFs): A Process Model for Metrics”, 1991 IEEE
Aerospace Applications Conference Digest, February 3-8, 1991, Crested Butte, CO, pp. 3/1-
12.

D.Y. Tamanaha & P.J. Bourgeois, “Rapid Prototyping of Large Command, Control,
Communications and Intelligence C3I Systems”; 1990 IEEE Aerospace Applications
Conference Digest, February 4-9, 1990, Vail, CO; pp. 253-263.

J.D. Thornton, “Engineering Work Station for Rapid Proto-typing of Real Time Display
Systems”; Proceedings of the IEEE/AIAA 11th Digital Avionics Systems Conference, October
5-8, 1992, Seattle, WA; pp. 57-61.

C. Tristram, “People Power”; PC Week, January 15, 1996, vol. 13 no. 2, p. 13.

J. Uhde & D. Weed, “Library Reuse in a Rapid Development Environment”; Proceedings of the
AIAA Conference on Computing & Aerospace X, March 28-30, 1995, San Antonio, TX; pp.
521-530.

J. Uhde-Lacovara, D. Weed, B. McCleary, & R. Wood, “The Rapid Development Process
Applied to Soyuz Simulation Production”, internal document, 1994

N. Wehn, H.-J. Herpel, T. Hollstein, P. Poechmueller, & M. Glesner, “High-Level Synthesis in
a Rapid-Prototype Environment for Mechatronic Systems”, EURO-DAC ‘92, European Design
Automation Conference, September 7-10, 1992, Hamburg, Germany, pp. 188-193.

R. Weston, “Pushing the Limits of RAD”; Open Computing, June 1995, vol. 12 no. 6, p. 30.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix B: Rapid Development Glossary

Page 53

 Appendix B: Rapid Development Glossary

B.1 Rapid Development Lexicon

The following is a list of terms and their definitions which may be found with some regularity
in the literature addressing various topics of a Rapid Development paradigm. There are four
sources from which most of the definitions for the terms are derived

• JSC Engineering Directorate; Aerosciences and Flight Mechanics Division; Guidance,
Navigation, and Control Rapid Development Laboratory database and experience

• JPL Technical, Commercial and Industrial database and experience
• Technical, Commercial, and Industrial RDM database and experience in the open

literature
• IEEE Software Engineering Standards Collection (1994 Edition)

Emphasized text in the definition field of the Glossary indicates that a definition may be found
for the emphasized text in the Glossary

TBD signifies the entry is a placeholder to be expanded in a later delivery

__

AC-100 Hardware in the loop simulation processor (tests AutoCode output)

ASDS Advanced Simulation Development System - Generic trajectory
generation and GN&C/P simulation tool developed by McDonnell
Douglas featuring large reusable libraries of engineering models,
utilities, and processes in the Ada language

AutoCode MATRIXx tool for automated translation of SystemBuild block
diagrams into Ada or C code

Build Complete integrated and tested, configuration controlled version of
system - successive builds.

CASE Computer Aided Software Engineering - The use of computer based
tools to aid in the software engineering process including software
design, requirements tracing, code production, testing, document
generation, etc.

CI Configuration Item - An aggregation of hardware and/or software that
is designated for configuration management (CM) and treated
as a single entity in the configuration management process

CM Configuration Management - A discipline applying technical and
administrative direction to identify and document the functional
and physical characteristics of a configuration item, control
changes to those characteristics, record and report change
processing and implementation status, and verify compliance with
specified requirements

COCOMO Constructive Cost Model - Software cost estimation model based on a
large database of commercial, industrial, and military software

Page 54

Appendix B: Rapid Development Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

applications derived from the book “Software Engineering
Economics” by Barry Boehm

concurrent The occurrence of two or more activities within the same interval of
time achieved by either interleaving the activities or by their
simultaneous execution

COTS Commercial off-the-shelf - purchased software tools usually used in
the SEE

CSC Computer Software Component - A decomposition of CSCIs. May be
composed of other CSCs or CSUs

CSCI Computer Software Configuration Item - An aggregation of software
components that satisfy some end-user function

CSU Computer Software Unit - The lowest level of CSCI decomposition

Deslevs Prun attributes from as developed detailed design

DID Data Item Description - Essentially a deliverable document

DocumentIt MATRIXx automated documentation and debugging tool providing
support for Framemaker, Interleaf, and standard ASCII
environments

DOD Department of Defense

Domain Experts In the Rapid Development Model domain experts provide technical
expertise across the required range of technical disciplines in the
project. They are members of the Rapid Development Team and
perform the detailed development functions

Dropspecs Drop specifications in Spiral Development Model

Evolutionary Dev Model The evolutionary development model features the same strategic
basis as the incremental development model but differs from it
in acknowledging that the user need is not fully understood and all
requirements cannot be defined up front. The user needs and
system requirements are thus only partially defined up front and
refined in each succeeding build

Evolution Cycle A Rapid Development life cycle phase resulting in increasingly
mature builds and leading to the final product at the last cycle

Exit Conditions Requirement conditions to be met at each milestone

FCA Functional Configuration Audit - An audit conducted to verify that a
configuration item has been completed satisfactorily

FQR Formal Qualification Review - The test, inspection, or analytical
process by which a group of configuration items comprising a
system is verified to have met specific contractual performance
requirements

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix B: Rapid Development Glossary

Page 55

GN&C Guidance, Navigation, and Control

GN&C/P The GN&C system combined with the propulsion system

GUI Graphical User Interface - Generic term for utilization of screen data
presentation and user input via pointing devices (e.g. mouse) to
facilitate user interaction with a software construct

HCE Hardware Connection Editor HCE

HWCI Hardware Configuration Item - An aggregation of hardware
components that satisfy some end-user function

Incremental Dev Model A software development technique in which the requirements,
design, implementation and testing occur in an overlapping,
iterative, manner resulting in incremental completion of the overall
product

IDD Interface Design Description - A document defining interfaces
between CSCIs

ISO 9000 International Organization for Standards method for assessing
supplier ability to meet commitments and requirements
(International analogue of SEI CMM)

IV&V Independent Verification and Validation

KPA Key Process Area - CMM area of focus

MATRIXx An integrated toolset providing a graphical environment for analysis
and development of system requirements, design, development,
code, and test over the entire development cycle

Metric Quantitative measure of system size, complexity, cost, quality etc.

OCR Operational Concept Review -.Reviews held to resolve open issues
regarding the operations concept for a system

PCA Physical Configuration Audit - An audit conducted to verify that an as
built configuration item conforms to the technical documentation
that defines it

PMI Project Management Information - the Information required by each
Prun in addition to the requirements to be used in project
management and design

Pruns Projects Units (HW & SW packages, Superblocks , models, etc.)

Prototyping A hardware and software development technique in which a
preliminary version of the hardware/software product is developed
to stimulate user feedback, determine feasibility, or investigate
timing or other issues in support of the development process

QA Quality Assurance - TBD

Quality Gates The set of conditions which must be met to transition from one life

Page 56

Appendix B: Rapid Development Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

cycle phase to the succeeding phase

Rapid Dev Model A extension of the Spiral Development Process where additional
tools (such as integrated SEE tools like MATRIXx are used to
speed the process

Rapid Development Team In the Rapid Development paradigm a project dedicated team
which assumes ownership of the entire development process and
end product. The Rapid Development Team includes all critical
domain and systems skills and expertise needed to successfully
complete the project.

Rapid Prototyping A subset of the Rapid Development process where an initial
prototype version is created, primarily for validating the initial
requirements and design concepts

RC Requirements Change - The reversal of the conventional acronym CR
(Change Request) is intended to specify the evolutionary
requirements discovered during the Rapid Development
evolutionary model exercise as opposed to a conventional new
requirement written against the requirements baseline

RDL Rapid Development Laboratory - NASA/JSC facility for accelerated
GN&C software development research and applications

Reqlevs Prun attributes from high level requirements (requirements “shalls”)

Reusable Library Collection of reusable code modules (e.g. utilities, models, etc.)

SDF Software Development File - A collection of material pertinent to the
development of a given software unit or set of related units.
Contents typically include the requirements, design, technical
reports, code listings, test plans, test results, problem reports,
schedules, and notes for the units

SEE Software Engineering Environment - The hardware, software,
firmware, procedures and documentation needed to perform
software engineering. Elements may include but are not limited to
CASE tools, compilers, assemblers, linkers, loaders, operating
systems, debuggers, simulators, emulators, documentation tools,
and database management systems

SEI Software Engineering Institute

SLOC Source lines of code - metric for sizing of software products

Spiral Dev Model Spiral Development Process - An accelerated development process
where the system requirements, design, code, test, and integrated
test processes are iterated on concurrently rather than being
executed sequentially

Statemate Methods and tools for requirements, development, and validation

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix B: Rapid Development Glossary

Page 57

STE Software Test Environment - The facilities, hardware, software,
firmware, procedures and documentation needed to perform
qualification, and possibly other, testing of software. Elements
may include but are not limited to simulators, code analyzers, test
case generators, path analyzers, etc. and may include elements
used in the SEE

Superblocks TBD

Support Processes The set of general technical, management, and institutional processes
providing support to the development process (e.g. project
management, requirements management, configuration
management, etc.)

SysemBuild MATRIXx graphical interface tool supporting system design from data
flow block diagrams

Test Case Spec. A document that specifies the test inputs, execution conditions and
predicted results for an item to be tested

Test Design Documentation specifying the details of a test approach for a software
feature or combination of features and identifying the associated
tests

V&V Verification and Validation - Determination whether the requirements
for a system or component are complete and correct, the products
of each development phase fulfill the requirements and conditions
imposed by the previous phase, and the final system or
component complies with specified requirements

Waterfall Model Conventional software development model featuring sequential
development of the component life cycle phases with
requirements established early in the process

Xmath MATRIXx tool for design and analysis of simulations, control systems,
and numerical calculations

Page 58

Appendix B: Rapid Development Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

B.2 MIL-STD-498 Reviews and Documentation

The following is a list of terms associated with documentation and technical/management
reviews suggested in MIL-STD-498. The MIL-STD-498 is superseding MIL-STD-2167A and
makes many significant changes to accommodate currently evolving Rapid Development
processes

The source from which the terms for this Appendix are derived is:
• MIL-STD-498 - Software Development and Documentation, Software Technology

Support Center, Hill Air Force Base, Utah,

Emphasized text in the definition field of an entry indicates that a definition may be found for
the emphasized text in the elsewhere in the Appendix

TBD signifies the entry is a placeholder to be expanded in a later delivery
__

498 MIL-STD-498 - DOD Standard superseding MIL-STD-2167A for the
development of systems and software applications. A key feature
of the standard is its strategy for accommodating facets of the
Rapid Development model paradigm

1521B MIL-STD-1521B - DOD Standard for technical reviews and audits
invoked by 2167A

2167A MIL-STD-2167A - DOD Software Development Standard - Establishes
uniform requirements for software development applicable
throughout the system life. The standard provides the basis for
Government insight into contractor software development, testing,
and evaluation

CDM Conventional Development Model - Software development paradigm
predicated on a sequential development model of the software/
hardware system. The CDM underlies the structure of the system
life cycle in 2167A

CDR Critical Design Review - Formal review required by 1521B to review
the detailed designs for each CSU and assure the system
configuration items meet the specified requirements

CMM Capability Maturity Model - SEI method for assessing supplier ability
to meet commitments and requirements (American analogue of
ISO 9000)

COM Computer Operation Manual - A 498 DID containing instructions for
operating a computer

CPM Computer Programming Manual - A 498 DID containing instructions
for programming a computer

CRR Critical Requirements Review - Reviews held to resolve open issues
regarding the handling of critical requirements, such as safety,
security, and privacy

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix B: Rapid Development Glossary

Page 59

DBDD Database Design Documentation - A 498 DID describing the design of
an associated database

FSM Firmware Support Manual - A 498 DID containing instructions for
programming firmware devices

IDD Interface Design Document - A 498 DID specifying the design of one
or more interfaces between one or more software systems and
hardware systems

IPR In-Progress Review - Technical and management reviews scheduled
at completion of a Build milestone

IRS Interface Requirements Specification - A 498 DID containing the
requirements for one or more interfaces

OCD Operational Concept Description - A 498 DID containing the
operational concept for the system

PDR Preliminary Design Review - Formal review required by 1521B to
review the detailed designs of CSCIs and CSCs to evaluate the
progress, technical adequacy, and risk resolution of the selected
design approach for one or more configuration items

SCOM Software Center Operator Manual - A 498 DID containing instructions
for operators of a batch or interactive software system that is
installed in a computer center

SDD Software Design Description - A 498 DID containing detailed design
for each CSCI

SDP Software Development Plan - A 498 DID containing the plan for
performing the software development activities

SDR Software Design Review - Reviews held to resolve open issues
regarding the architectural design of a CSCI, CSCI-wide design
decisions, and detailed design of a CSCI or portion thereof (such
as a database)

SIOM Software Input/Output Manual - A 498 DID containing instructions for
users of a batch or interactive software system installed in a
computer center

SIP Software Installation Plan - A 498 DID containing the plan for installing
the software at the user sites

SPR Software Plan Review - Reviews held to resolve open issues regarding
the SDP, STP, SIP, and STrP

SPS Software Product Specification - A 498 DID comprised of the
executable software, the source files, and information to be used
for support

SQPP Software Quality Program Plan - A description of the plan for

Page 60

Appendix B: Rapid Development Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

implementing quality control procedures in a hardware/software
system development

SwRR Software Requirements Review - A review of the requirements
specified for one or more software configuration items to evaluate
their responsiveness the system requirements

SyRR System Requirements Review - A review of the completeness and
adequacy of the system requirements to evaluate the system
engineering process that produced those requirements and to
assess the results of system engineering studies

SSDR System/Subsystem Design Review - Reviews held to resolve open
issues regarding the system or subsystems design decisions or
the architectural design

SSS System/Subsystem Specification - A 498 DID providing
documentation of the essential requirements (functions,
performance, design constraints, and attributes) of the software
system

SRR Software Requirements Review - Reviews held to resolve open issues
regarding the specified requirements for a CSCI

SRS Software Requirements Specification - A 498 DID presenting the
requirements to be met by each CSCI

SSDD System/Subsystem Description - A 498 DID defining the system and
its. partitioning into HWCIs and CSCIs

SSR Software Supportability Review - Reviews held to resolve open issues
regarding the readiness of the software for transition to the
support agency, the software product specifications, the software
support manuals, the software version descriptions, and the status
of transition preparation and activities

SSRR System/Subsystem Requirements Review - Reviews held to resolve
open issues regarding the specified requirements for a software
system or subsystem

STD Software Test Description - A 498 DID containing test case
descriptions and procedures for qualification testing for one or
more software systems

STP Software Test Plan - A 498 DID containing the plan for conducting
qualification testing

STR Software Test Report - A 498 DID containing a record of the formal
qualification testing performed on the software system

STrP Software Transition Plan - A 498 DID containing the plan for
transitioning to the support agency

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix B: Rapid Development Glossary

Page 61

SUM Software Users Manual - A 498 DID containing instructions sufficient
to execute a software system

SUR Software Usability Review - Reviews held to resolve open issues
regarding the readiness of the software for installation at user
sites, user and operator manuals, software version descriptions,
and the status of installation preparation activities

TRdR Test Readiness Review - Reviews held to resolve open issues
regarding the status of the software test environment, the status
of the software to be tested, and the test cases and procedures to
be used for CSCI qualification testing or system qualification
testing

TRsR Test Results Review - Reviews held to resolve open issues regarding
the results of CSCI testing or system qualification testing

SVD Software Version Description - A 498 DID which identifies and
describes a version of a system or component

Page 62

Appendix C: Metrics Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

 Appendix C: Metrics Glossary

The following is a list of terms and their definitions which are associated with the application
of metrics to the Software/Hardware development and sustaining engineering processes.
There are three sources from which most of the definitions for the terms are derived

• DA3 Software Development Metrics Handbook Version 2.1 - NASA/JSC 25519 April
1992

• DA3 Software Sustaining Engineering Metrics Handbook Version 2.0 - NASA/JSC
26010 December 1992

• DA3 Development Project Metrics Handbook Version 5.0 - NASA/JSC 36112 March
1993

The following Metrics Glossary items do not include project management metrics.
__

Active Test Time Elapsed wall-clock time during which software was actively being
tested. Active test time does not include time lost due to failure,
reconfiguration, or debugging

Actual SLOC A count of the lines of New and Modified code actually produced
during the code production and test phases of a project.

Baseline SLOC The size of the current operational baseline at project start. Applies to
a project to update or modify an existing program.

Break/Fix Ratio The number of DRs closed with a software fix that were generated as
the result of a previous DR fix or CR enhancement divided by the
sum of the number of DRs closed with a software fix plus the
number CRs closed with a software change

Capacity Maximum amount of a resource available for use.

Change Request (CR) A request for system enhancement

Closed Date The date when the software is returned to operations or is
operationally ready. (i.e. the software fix or enhancement is
complete and on the floor).

Closure Codes A classification scheme used to identify how work was completed or
submitted on DR requests

Code and Test Code is the translation of a designed unit into a computer program that
can be accepted by a processor. Testing is the exercising (either
manually in the case of a walkthrough or electronically through unit
test cases or both) of the coded unit

Comment Ratio The fraction of the number of comment lines in the new and modified
software to the SLOC in the new and modified software.

Comment SLOC A textual string, line, or statement that has no effect on compiler or
program operations

Corrective Maintenance Software changes resulting from Discrepancy Reports

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix C: Metrics Glossary

Page 63

COTS Commercial-off-the-shelf software that is purchased for a project.
COTS software is only included in the software size metric if it is
to be maintained by the purchaser

Compilation Unit The lowest independently compilable software element subject to
configuration management.

CSC Computer Software Component - equivalent to an Ada software
package

Computer Resource Utilization The fraction of time a resource is busy.

Configuration Item Logically related grouping of units or packages which perform a major
function of the system.

Critical DR A failure that affects the following systems in the manner described:
Development System - Inhibits major processing in more than one

area and cannot be circumvented.
Test System - Inhibits one or more applications from being tested, or

brings the system to a halt and cannot be circumvented.
Operational Systems - Drastically reduces the usefulness of the

system in support of current operations, and cannot be
circumvented.

All Systems - Requires reboot of workstation to correct problem.

Data Primitive A basic data item required to compute a metric value.

Defect An error in the software.

Deleted SLOC Existing SLOC that will be removed from the baseline by the
completion of the delivery.

Design The definition of each software unit’s control and data structure,
interfaces, and lists of accessed data items.

Development Progress A measure of progress toward design, implementation, and
integration of the software.

Discrepancy Report A notification that a system under test or in operation (i.e. hardware,
software, system, operations) has deviated from the behavioral
characteristics expected of it. The notification carries a description
of the problem, an assessment of the criticality of the problem, and
a portion of the system to which the problem is charged.

DR Criticality The assessed effect the DR has on the continuance of the system
activity.(e.g. test, mission support, training. etc.)

DR Density The total number of DRs written against a piece of software divided by
the size of that software.

Error A human action taken during the design, code, or test of software that
results in a fault.

Fault Type A problem identifier which may be categorized by the closure code of

Page 64

Appendix C: Metrics Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

the DR, by the DR criticality, or by the taxonomy of faults
established for the project.

Failure The inability of a system or system component to perform a required
function within specified limits.

Failure Rate The cumulative number of failures divided by the cumulative active test
time.

Fault Density The total number of DRs written against a piece of software divided by
the size of that software.

Generic Unit A template that defines a program unit as either a generic subprogram
or a generic package.

Integration The process of combining coded and tested units and configuration
items into a system or subsystem.

Instance Specified subprograms or packages that are obtained by assigning
values to the parameters of the generic unit.

Major DR A failure that affects the following systems in the manner described:
Development System - Inhibits major processing or produces

erroneous outputs limited to one function
Test System - Inhibits an entire processor of an application from being

tested or prohibits completion of a test case by blocking other test
functions.

Operational System - Reduces the usefulness of one or more major
system functions used in the current operations, and cannot
conveniently be circumvented.

All Systems - Logoff/Logon is required to restore operation.

Minor DR A failure that affects the following systems in the manner described:
Development System - Anomalies that slight and can be circumvented
Test System - DRs that do not directly affect completion of a test

function and are considered to have no effect or to be insignificant
in an operations environment.

Operational System - DRs that occur during a mission, simulation, or
validation period that are considered to have no effect or to be
insignificant during that period.

McCabe Complexity The number of linearly independent paths in a module that, when
taken in combination, will generate every possible path.

Modified SLOC A module or compilation unit is “modified” if it is changed and the
change affects less than 20% - 50% of the SLOC.

Module The lowest level of software compilation subject to configuration
management.

New SLOC Newly developed code or code in a module or compilation unit that has
been changed and the changes affect more than 20% - 50% of its

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix C: Metrics Glossary

Page 65

SLOC.

Normalized Active Test Time Active test time divided by the sum of new plus modified
SLOC.

Observed Failure Rate The cumulative number of failures divided by the active test time.

Open DR Density The total number of open DRs written against a piece of software
divided by the size of that software.

Operational Hour An hour that the system is directly supporting a primary user.

Progress A count of the number of DR or CR requests submitted minus the
number of DR or CR requests closed during a specified reporting
interval.

Project The set of activities performed to develop a new system or to upgrade
an existing system.

Release The entire software configuration, not just the changed modules.

Resource An available system component.

Reused SLOC Those SLOC that are not part of the baseline and exist on a different
project but are used on the current project.

Software Reliability The probability that the software will not cause a failure of a system for
a specified time under specified conditions.

Software Requirement Any “shall” statement in the project’s controlling software
specification.

Software Staff All those directly involved in the software development activity,
including programmers, testers, and first line managers.

SLOC An acronym for Source-Line-Of- Code, any non-comment, non-blank
carriage return terminated source line of code.

Staffing The number of hours spent on a project by all those directly involved
in the development activity, including programmers, testers, and
first line management.

Subsystem A collection of functionally related software configuration items.

System A group of interacting, interrelated, or interdependent elements (sub-
system or other configuration components) which form a
recognized complex whole.

Subprogram A sequenced set of statements that may be used in one or more
computer programs and at one or more points in a computer
program.

Test Baseline SLOC Those unmodified baseline SLOC that must be retested to verify
system operational requirements are met.

Test Case A specific set of procedures using associated data developed to

Page 66

Appendix C: Metrics Glossary
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

exercise a particular program path or verify compliance with a
specific requirement.

Total SLOC Total SLOC is defined as (Unmodified SLOC + New SLOC + Modified
SLOC - Deleted SLOC + Reused SLOC)

Unit A collection of modules or compilation units performing a testable
function

Unmodified Baseline The number of current operational baseline SLOC that are not
changed during the development effort.

Workload The collective designation of a system’s inputs (i.e. programs, data,
commands) over time.

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix D: Traditional Metrics Definitions and Acronyms

Page 67

 Appendix D: Traditional Metrics Definitions and Acronyms

One effective metrics program in use at NASA, in a traditional development environment, was
adopted by the JSC/Mission Operations Directorate (MOD) during the period from May 1990
to March 1992. This metrics program has been and is being used successfully as a
management tool for large safety critical projects, and provide a good starting point for
developing a metrics program. A summary of the metrics collected is presented here for
reference.

The source documents which describe the program in detail include:

Software Development Metrics Handbook, JSC-25519, Version 2.1, April 1992

Software Sustaining Engineering Metrics Handbook, JSC-26010, Version 2.0, December
1992

Development Project Metrics Handbook, JSC-36112, Version 5.0, March 1993

D.1 Definitions

Three tables of metrics definitions are presented here. These represent samples of traditional
Development Engineering, Sustaining Engineering, and Project Management metrics.
Typically, a new metrics program can be expected to implement on Development Engineering
metrics, with the others added progressively as the program matures. A variety of acronyms
which appear in these tables are expanded in section D.2

Table 3. Sample of Traditional Development Engineering Metrics

Metric
Classification

Description Data Collected

Software Size
The SLOC in the system
that must be tested and
maintained

Total SLOC New SLOC
Modified SLOC Reused SLOC
Baseline SLOC Deleted SLOC
Test baseline SLOC
Unmodified SLOC
Unmodified Baseline SLOC
Ratio of Comments to Total SLOC

Software
Staffing

Number of engineering
and first line manage-
ment personnel involved
in system development

Planned staff hours
Actual staff hours

Software
Requirements
Stability

Total number of require-
ments to be implemented
for the project

Total A,B,C-level reqts (“shalls”)
Cumulative changes

Page 68

Appendix D: Traditional Metrics Definitions and Acronyms
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Development
Progress

Number of modules suc-
cessfully completed
from design through test

Planned and actual “units” designed
Planned and actual “units” coded
Planned and actual “units” tested
Planned and actual “units” inte-
grated

Computer
Resource
Utilization

Percent of CPU, disk,
memory, and I/O channel
utilization

CPU utilization/capacity
disk utilization/capacity
memory utilization /capacity
I/O channel utilization /capacity

Test Case
Completion

Percent of test cases suc-
cessfully completed

Planned system integration tests
Actual system integration tests

Discrepancy
Report Open
Duration

Time lag from problem
report initiation to problem
report closure

Critical DRs closed in <10 days
Critical DRs closed in <30 days
Critical DRs closed in <60 days
..... etc.

Fault Density
Open and total defect den-
sity over time

New SLOC
Modified SLOC
Total DRs written
Total DRs closed
Active test hours

Test Focus
Percent of problem reports
closed with a software fix

Total DRs closed
Total DRs closed with a single fix

Software
Reliability

Probability that the soft-
ware works for a specified
time under specified condi-
tions

Cumulative critical DRs written
Cumulative major DRs written
Cumulative minor DRs written
Active test hours

Design
Complexity

Number of modules with a
complexity greater than an
established threshold

Number of modules with McCabe > 10
Number of modules with McCabe > 40
..... etc.

Ada Instantia-
tions

Size and number of generic
subprograms developed and
the frequency of their use
within the project

Number of generic units developed
Number of instances of the generic unit
Generic unit SLOC count

Table 3. Sample of Traditional Development Engineering Metrics

Metric
Classification

Description Data Collected

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix D: Traditional Metrics Definitions and Acronyms

Page 69

Table 4. Sample of Traditional Sustaining Engineering Metrics

Metric
Classification

Description Data Collected

Break/Fix Ratio
Ratio of DRs resulting from
a DR fix or SR change to
the total number DRs+SRs

No. of DRs changed with software fix
No. SRs closed with software change
DRs closed with a software fix gener-
ated with a previous DR fix or SR
enhancement

Software Volatil-
ity

Number of times a module
is changed due to a Service
Request

Number of modules changed per
release Total modules in release
Release date

SR Scheduling
The length of time to close
an SR and the effort spent
on SR closure

Date of submission
Date of availability for release inclusion
Date of SR release to facility

Problem/
Enhancement
Closure

Actual DR and SR closure
rate by (sub)system

DRs submitted/closed by (sub)system
SRs submitted/closed by (sub)system

Fault Type Dis-
tribution

Percent of defects closed by
type of fault
(e.g. logic, error handling,
standards, interface, etc.)

Number of DRs closed by category
Number of DRs closed by code
Number of DRs closed by fault type
Number of DRs closed by process iden-
tity

Staff Utilization

Staff effort for DRs by
(sub)system
Staff effort for SRs by
(sub)system

Effort per DR open/closed by (sub)sys-
tem
Effort per SR open/closed by (sub)sys-
tem

Page 70

Appendix D: Traditional Metrics Definitions and Acronyms
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

Table 5. Sample of Traditional Project Management Metrics

Metric
Classification

Description Data Collected

Schedule
Performance

Milestone Volatility for the Next
Year

MVYI = MAM/TM

Project Critical Path Perfor-
mance Index

PCPIi = ACPMIi/SCPMi

Reporting Period Milestone Per-
formance Index

MPIi = AMi/SMi

Cumulative Milestone Perfor-
mance Index

CMPI = CAM/CSM

Project Schedule Deviation on
Critical Path

PAT = (EBT + 4*MLT + EWT)/6

Earned Value Rate to Completion
Rate Index

EVCRI = AER/MER

Schedule Performance Index SPIi = BCWPi/BCWSi

Acquisition Performance Index APIi = AAMi/SAMi

Cost
Performance

Budget Performance Index BPIi = BUi/AUi

Cumulative Budget Performance
Index

CBPI = CBU/CAU

Staffing Index SIi = 100*(ASRUi - PSRUi)/PSRUi)

Cost Performance Index Using
EV

CPI = BCWP/ACWP

Cost-Schedule
Performance

Project Performance Index PPI = (MPI + BPI)/2

Cumulative Project Performance
Index

CPPI = (CMPI + CBPI)/2

Cost Schedule Index Using EV CSI = (SPI + CPI)/2

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix D: Traditional Metrics Definitions and Acronyms

Page 71

Delivered
Content

Cumulative Risk Performance
Index

CRPI = RRK/TRK

Reviews and DRLIs Performance
Index

RDPIi = (AMRi/PMRi + ADRLi/
PDRLi)/2

Hardware and Software Delivery
Performance Index

HWSWI = K1*AHW/PHW
 + K2*ASLOC/PSLOC

Requirements Volatility from
Baseline Index

RVBI =
(Changed + Added + Deleted)REQTS
 /Total Baselined Requirements

Training Performance Index TPIi = ATHi/PTHi

Quality
Performance

DRL Rework (RIDs or CRs)
Average

DRLRAi = (S(RIDij)j = 1,Ni)/Ni

Hardware Development DRs Rate HWDRR = HWDR/HWUT

Software Development DRs Rate SWDRR = SWDR/SWIT

DR Rate DRR = DR/TR

Quality Point Reviews Index QPRI = AQPR/PQPR

Average Quality Point Review
Score

AQPRSi = (S(QPS)j = 1,Mi)/Mi

External
Influences

Reqts Volatility from Baseline
Impact

Estimates of dollar or time impacts due
to:
 changing requirements
 untimely decisions
 project dependency items
 unscheduled work

Timeliness of Decision and Proj
Dep Items

Unscheduled Work Impact

Subsystems Impacted by Reqts
Deviation

Requirements Complexity

Table 5. Sample of Traditional Project Management Metrics

Metric
Classification

Description Data Collected

Page 72

Appendix D: Traditional Metrics Definitions and Acronyms
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

D.2 Metrics Acronyms

AAM achieved acquisition milestones
ACPM achieved critical path milestones
ACWP actual cost of work performed
ADRLI actual DRLIs
AEVR actual earned rate
AHW actual delivered hardware subsystems or units
AM achieved milestones
AMR actual major reviews
AQPR actual quality point review
ASI actual staff resource units
ASLOC actual delivered source lines of code
ASRU actual staff resource unit
AT acceptance testing
ATH actual training hours
AU actual units

BCWP budgeted cost of work performed
BCWP-Cum cumulative budgeted cost of work performed
BCWS budgeted cost of work scheduled
BPI budget performance index
BU budgeted units

CAM cumulative achieved milestones
CASE Coordination and systems engineering
CAR cumulative actual risk (Sum of IDRi
CAU cumulated actual units
CBPI cumulative budget performance index
CBU cumulative budgeted units
CMPI cumulative milestone performance index
COTR contracting officer technical representative
COTS commercial off the shelf
CPM critical path method
CPI cost performance index
CPPI cumulative project performance index
CR change request
CSI cost schedule index
CSM cumulative scheduled milestones
CV cost variance

DR discrepancy report
DRD data requirements description
DRL data requirements list
DRLIs data requirements list items

Guidelines for the Rapid Development of Software Systems - Revision A
February 18, 1998 Appendix D: Traditional Metrics Definitions and Acronyms

Page 73

DRLID data requirements list items delivered (Ni)
DRLRA data requirements list (DRLs) rework average
DRR DR rate

EBT estimated best time
EV earned value

EVCRI earned value rate to completion rate index
EWT estimated worst time

GFE government furnished equipment

HWDRR hardware development DRs rate
HWUT hardware units in test or operating at time of testing

IDRi Identified risk per reporting period

K1 weighted relative importance of hardware
K2 weighted relative importance of software
KSLOC thousands of source lines of code

MAM moved, added, and deleted milestones
MEVR minimum earned value rate
MPI milestone performance index
MRK mitigated risk
MT mode time
MVYI milestone volatility for the next year

PAT projected activity time

PCPI project critical path performance index

PDRLI planned DRLIs
PERT program evaluation and review technique
PHW planned hardware subsystems or units
PMR planned major reviews
PPI project performance index
PQPR planned quality point review
PRUN project unit
PSLOC planned source lines of code
PSI planned staff resource units
PSR project status review

PSRU planned staff resource unit

Page 74

Appendix D: Traditional Metrics Definitions and Acronyms
February 18, 1998 Guidelines for the Rapid Development of Software Systems - Revision A

PTH planned training hours

QPS quality point scores
QT qualification testing

RC revealed requirements change
RID review item disposition
RRK remaining risk
RTP remaining time period
RVBI requirements volatility from baseline index

SAM scheduled acquisition milestones
SCPM scheduled critical path milestones
SDCP schedule deviation on the critical path

SDDR system detailed design review
SEO system engineering office
SFDR system functional design review
SM scheduled milestones
SOP standard operating procedure
SPI schedule performance index
SRR system requirements review
SSAT subsystem acceptance test
SSCDR subsystem critical design review
SSIT software in KSLOC in test
SSPDR subsystem preliminary design review
SV schedule variance

SWDR software DRs
SWDRR software development DRs rate

TM total milestones
TR test run
TRK total risk

